PRELIMINARY INFORMATION - Jan 18, 2017

Features

- Supply voltage range from 12V to 72V, operational down to 7V
- 11V, 100mA high efficiency DC-DC converter for gate supply and other loads
- Three complementary 200mA gate drivers with programmable dead time and protection features
- Integrated automotive 16Bit RISC processor with and hardware MAC and divider units
 - 32kByte Flash with ECC error protection
 - 16kByte ROM
- 4 kByte SRAM, parity protected
- Self advancing half bridge PWM generators autonomously generate various commutation waveforms
- 1MS/s 12bit ADC autonomous sample sequence engine synchronized to PWM with direct memory access
- One SPI module

Applications

· 4 timer capture and compare units with QEI modes

48V automotive and commercial vehicle applications BLDC-Motors in industrial 24V to 72V applications

- One high voltage enable, 9 general purpose IOs
- Thermally efficient 7x7mm 36pin QFN package
- AEC-Q-100 grade 0 qualified (T=150°C)

Brief functional description

The E523.52 is a programmable, high-voltage brushless motor controller for 24V..48V automotive applications, industrial applications and commercial vehicles. It integrates 3 half-bridge drivers, a 11V step down converter, two linear regulators, and a 16bit RISC microcontroller with 32kB Flash.

elmo

E523.52

ROHS compliant

The DC-DC converter efficiently provides 11V for the six gate drivers, the internal linear regulators, and other loads such as external Hall sensors. Up to 9 configurable IO pins facilitate interfacing with the application and the outside world. All IOs can be sampled by a 12bit, 1MS/s ADC with direct memory access.

Three self advancing PWM generators with integrated dead time can implement various wave-forms. Fully integrated back-EMF channels allow sensor-less commutation. Automatic ADC triggering allows programming of complex commutation algorithms. The memory can be divided into protected and field programmable areas. Internal temperature monitoring and a thermally efficient 36 Pin QFN package enable the driver section to operate close to its maximum junction temperature of 150 °C.

Ordering information

Product ID	Package	Ordering-No.
E523.52A	QFN36L7	E52352A279B

Typical Application

Figure 1: Typical application

PRELIMINARY INFORMATION - Jan 18, 2017

1 Package and Pinout

1.1 Package Pinout

1.2 Pin Description

Table 1.2-1: Pin Description

No	Name	Туре	Description
1	PC0	AD_IO	DIO/AIN of μC core, JTAG TCK
2	PC1	AD_IO	DIO/AIN of μC core, JTAG TDA
3	PC2	AD_IO	DIO/AIN of µC core
4	VPP	HV_A_IO	FLASH test pad
5	PC4	AD_IO	DIO/AIN of µC core
6	PC5	AD_IO	DIO/AIN of µC core
7	PC6	AD_IO	DIO/AIN of µC core
8	PC7	AD_IO	DIO/AIN of µC core
9	TMODE	D_I	Test mode, to be connected to ground in application (pull-down)
10	NRST	D_IO	Reset for μ C core (pull-up, bidirectional active low reset, open-drain driver)
11	VDDC	S	Core supply pad (internal regulator: 1.8V) of μ C core
12	GND		Digital GND connection for the μ C core
13	VDD	S	3.3V supply; connection of external capacitor
14	GNDA	S	Analog ground
15	EN	HV_D_I	Enable (high-voltage level)
16	VG	HV_A_IO	Feedback for DC-DC. DC-DC Converter output voltage, supply for gate drivers.
17	GL1	HV_D_O	Half bridge 1: gate driver output for lowside FET
18	GL2	HV_D_O	Half bridge 2: gate driver output for lowside FET

PRELIMINARY INFORMATION - Jan 18, 2017

No	Name	Туре	Description
19	GL3	HV_D_O	Half bridge 3: gate driver output for lowside FET
20	GNDP	S	Power ground
21	LX	HV_D_O	DC-DC switching output
22	VSUP	HV_S	Power supply voltage
23	M1	HV_A_IO	Motor phase 1
24	GH1	HV_D_O	Half bridge 1: gate driver output for highside FET
25	BST1	HV_S	Half bridge 1: supply pin for highside driver
26	M2	HV_A_IO	Motor phase 2
27	GH2	HV_D_O	Half bridge 2: gate driver output for highside FET
28	BST2	HV_S	Half bridge 2: supply pin for highside driver
29	М3	HV_A_IO	Motor phase 3
30	GH3	HV_D_O	Half bridge 3: gate driver output for highside FET
31	BST3	HV_S	Half bridge 3: supply pin for highside driver
32	AMP_OUT	A_O	Output of current sense amplifier
33	IP	A_I	Current amplifier positive input
34	IN	A_I	Current amplifier negative input
35	PB6	AD_IO	DIO/AIN of µC core
36	PB7	AD_IO	DIO/AIN of µC core
EP	EP		exposed die paddle, connect to GND

Explanation of Types:

A = Analog, D = Digital, S = Supply, I = Input, O = Output, IO = Bidirectional, HV = High Voltage

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

2 Block Diagram

Figure 2-1: Block Diagram

PRELIMINARY INFORMATION - Jan 18, 2017

3 Operating Conditions

3.1 Absolute Maximum Ratings

- Operating the device at or beyond these limits may cause permanent damage.
- All voltages are referred to ground (0V).
- Currents flowing into the circuit have positive values.

Table 3.1-1: Absolute Maximum Ratings

No.	Description	Condition	Symbol	Min	Max	Unit
1	Storage Temperature		Ts	-40	150	°C
2	Storage temperature mission profile	T₅ < 55 ℃	t _{T,S,55}	15		years
3	Storage temperature mission profile	T₅ < 125℃	t _{T,S,125}	2000		h
4	Storage temperature mission profile	T₅ ≤ 150 <i>°</i> C	t _{T,S,150}	300		h
5	Junction Temperature		Tjunction	-40	125	S
6	Junction Temperature	Excluding Flash programming	Tjunction	-40	150	°C
7	Junction temperature mission profile ¹⁾	T _J < 23 ℃	t _{T,J,23}	3120		h
8	Junction temperature mission profile ¹⁾	T _J < 100℃	t _{T,J,100}	7800		h
9	Junction temperature mission profile ¹⁾	Tյ ≤ 150 <i>°</i> C	t _{T,J,150}	1080		h
10	Thermal resistance junction to case		$R_{\text{th,J-C,QFN}}$	-	5	K/W
11	VSUP, EN voltage		V _{VSUP}	-0.3	72	V
12	VSUP, EN voltage	t<500ms	V _{VSUP}	-0.3	76	V
13	Ground shift between GNDP and GNDA		V _{GNDP}	-0.3	0.3	V
14	VG voltage		V _{VG}	-0.3	15	V
15	LX voltage		V _{LX}	-2.4	V _{VSUP} + 0.3	V
16	VDD voltage		V _{VDD}	-0.3	3.6	V
17	BST[1-3] voltage		V _{BST1-3,abs}		87	V
18	BST[1-3] to M[1-3] voltage		V _{BST1-3,rel}	-0.3	15	V
19	GH1-3 voltage		V _{GH1-3}	V _{M1-3} - 0.3V	V _{BST1-} 3+0.3V	-
20	M[1-3] phase voltage		V _{M1-3}	-10V	V _{BATS} + 2V	-
21	GL[1-3] voltage		V _{GL1-3}	-0.3V	V _{VG} +0. 3V	-
22	IN, IP voltage		V _{IN,IP}	-0.3V	V _{VDD} +0 .3V	-
23	AMP_OUT voltage		V _{AMP_OUT}	-0.3V	V _{VDD} +0 .3V	-
24	AMP_OUT voltage		V _{AMP_OUT}	-0.3	3.6	V
25	AMP_OUT forced input current		I _{AMP_OUT}	-5	5	mA
26	IO pin voltage (PB6-7, PC0-2,PC4-7, NRST, TMODE)		V _{PORT}	-0.3	V _{VDD} +0 .3	V
27	Total IO pin current (PB6-7, PC0-2,PC4-7)				5	mA
28	VPP FLASH test pad voltage		V _{VPP}	0	14	V

¹⁾ According to various automotive conform medium- and high-temperature profiles, for other profiles contact Elmos

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

3.2 Recommended Operating Conditions

- Parameters are guaranteed within the range of recommended operating conditions unless otherwise specified.
- All voltages are referred to ground (0V).
- Currents flowing into the circuit have positive values.
- The first electrical potential connected to the IC must be GND. (If not specified specify timing sequence of electrical contacts.)

Table 3.2-1: Recommended Operating Conditions

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	VSUP supply voltage	RUN mode	V_{VSUP_run}	12	24	72	V
2	VSUP supply voltage	STANDBY & SLEEP mode	$V_{\text{VSUP}_\text{standby}}$	7	24	72	V
3	DC-DC Buck Converter: LX inductance	$V_{VSUP} = 24V$	L _{LX}		150		μH
4	DC-DC Buck Converter: Series resistance of LX inductance		R_{LX}	1	5	10	Ω
5	DC-DC Buck Converter: Saturation current of LX inductance		I _{SAT,LX}	240			mA
6	DC-DC Buck Converter: VG capacitance		C _{VG}	26	33	100	μF
7	DC-DC Buck Converter: Ceramic capacitance at VG		$C_{\text{VG_cer}}$	10	22	33	nF
8	DC-DC Buck Converter: C _{VG} equivalent series resistance		R _{ESR,CVG}		1.8		Ω
9	DC-DC Buck Converter: Peak-to-Peak Ripple Voltage at VG for reg- ulation		$V_{RIPPLE,VG}$	20		100	mV
10	DC-DC Buck Converter: Forward voltage of external diode at LX	I=100mA, T=25 <i>°</i> C	$V_{\text{F,DLX}}$		0.6	0.8	V
11	DC-DC Buck Converter: Reverse recovery time of external diode at LX		$T_{REV,REC,DLX}$			25	ns
12	DC-DC Buck Converter: Reverse voltage of external diode at LX		$V_{\text{REV,DLX}}$	V _{VSUP}			
13	GNDP shift to GNDA		V_{GNDP}	-100		100	mV
14	Motor phase voltage		V _{M1-3}	-2V		VSUP +2V	
15	EN pin: LOW input voltage		$V_{\text{EN}_{\text{LOW}}}$	0		1.3	V
16	EN pin: HIGH input voltage		$V_{\text{EN}_{\text{HIGH}}}$	2.7		V_{VSUP}	V
17	Current Sense Amplifier: Input voltage at IN, IP		$V_{\text{IN,IP}}$	0		2.5	V
18	Current Sense Amplifier: AMP_OUT DC load current		I _{AMP_OUT}	-200		200	uA
19	Current Sense Amplifier: Load capacitance at AMP_OUT		C _{AMP_OUT}	0		40	pF
20	Current Sense Amplifier: Adjusted gain		gain	5		100	

PRELIMINARY INFORMATION - Jan 18, 2017

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
21	Current Sense Amplifier: Feedback resistance from AMP_OUT to IN		R _{FB}	17,25			kOhm
22	Current Sense Amplifier: Common mode input range		CMRI	0		2.5	V

PRELIMINARY INFORMATION - Jan 18, 2017

4 Detailed Electrical Specification

4.1 System Overview

4.1.1 System Current Consumption

Table 4.1.1-1: System Current Consumption Electrical Parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Gate driver: RUN mode IC current consumption ^{*)}	T _{amb} = 25 ℃, No switching of gates	Ivsup_run		2		mA
2	Gate driver: STANDBY mode IC current consumption [*])	T _{amb} = 25 ℃	$I_{VSUP_STANDBY}$		1.5		mA
3	Gate driver: SLEEP mode IC current consumption	T _{amb} = 25 ℃, V _{VSUP} =24V	$I_{VSUP_SLEEP_24}$			20	uA
4	Gate driver: SLEEP mode IC current consumption	T _{amb} = 25 ℃, V _{VSUP} =48V	I _{VSUP_SLEEP}			25	uA
5	Motor Control Unit: total supply current I _{DDIO} + I _{DDA} + I _{DDC} + I _{DDCA}	$f_{core} = 48MHz$ IO current = 0 FLASH in active read	I _{DD_48MHz}			49.5	mA
		ADC active				047	
6	Notor Control Unit: total supply current example $I_{DDIO} + I_{DDA} + I_{DDC} + I_{DDCA}^{*)}$	IC current = 0	DD_STBY_48MHz			24.7	mA
		CPU in standby (halt) state ADC active					

*) Not tested in production

4.2 Gate Driver

4.2.1 Power Supply

4.2.1.1 DC-DC Buck Converter

Table 4.2.1.1-1: DC-DC Converter: Electrical Parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Buck converter output voltage	V _{VSUP} > 13 V; I _{VG} > -100 mA	V_{VG}	10	11	12	V
2	Buck converter output voltage standby mode ^{*)}	V _{VSUP} > 13 V; I _{VG} > -100 mA	$V_{VGstandby}$	8	11	12	V
3	Average available static load current at VG. ^{*) 1)}	V _{vG} > 90% of nominal value	I _{VG}			100	mA
4	Maximum avalable load current at VG dur- ing Start-Up scenario. [•])		I _{VG,START}			50	mA
5	Over-current limitation		I _{LX}	160	200	240	mA
6	ON resistance of switch between VSUP and LX		R _{on}		5	10	Ω

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
7	Maximum Switching frequency.") ²⁾	$\begin{array}{l} 15V < V_{VSUP} < 72V; \\ typical value for \\ V_{VSUP} = 24V; \\ V_{VSUP} \ depend- \\ ency \ is \ shown \ in \\ 5.2.1.2-1 \end{array}$	f _{swiтcн}	0.27	1.00	1.15	MHz
8	V_{VSUP} - V_{VLX} in case of 100% duty cycle	$7V < V_{VSUP} < 11V$ $I_{VG} = 75 \text{ mA}$	V _{DROP}			1	V
9	V _{VG_ext} . Over voltage protection for external components at open VG pin.	$V_{VG} = open$	V _{LX,OV}	15.8	17.4	19.0	V
10	Minimum off time in nominal mode.	Test Mode TM_DCDC_PFM	t _{off,min,nom}		0.5		μs
11	Minimum on time in nominal mode.	Test Mode TM_DCDC_PFM	t _{on,min,nom}		0.5		μs

*) Not tested in production

¹⁾ Load current includes all loads on VG. (Including internal loads.) ²⁾ Frequency if the inductor is in Continuos Current Mode, the V_{VG} is in specified range and no Over-current events are detected.

4.2.1.2 VDD Supply

Table 4.2.1.2-1: VDD Supply Electrical Parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	VDD output voltage	$I_{VDD} = -25 \text{ mA}$	V _{VDD}	3.2	3.3	3.4	V
2	VDD reset deactivation	VDD rising	V _{VDD_RSTD}			3.1	V

4.2.2 Power FET Gate Drivers

Table 4.2.2-1: Gate Drivers: Electrical Parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Resistance of GH(1-3) to BST(1-3) in ON state of HS driver	$\begin{array}{l} V_{\text{M1-3}} = VSUP \\ V_{\text{BST}} - V_{\text{M}} > 9V \\ I_{\text{GH1-3}} = -200 \text{mA} \end{array}$	R_{GH1-3_on}		10	20	Ohm
2	Resistance of GH(1-3) to M(1-3) in OFF state of HS driver	$\label{eq:V_M1-3} \begin{split} V_{\text{M1-3}} &= GNDP \\ V_{\text{BST}} \cdot V_{\text{M}} > 9V \\ I_{\text{GH1-3}} &= 200 \text{mA} \end{split}$	R_{GH1-3_off}		5	10	Ohm
3	Resistance of GL(1-3) to VG in ON-state of LS driver	$I_{GL1-3} = -200mA$	$R_{\text{GL1-3_on}}$		10	20	Ohm
4	Resistance of GL(1-3) to GNDP in OFF- state of LS driver	I _{GL1-3} = 200mA	$R_{\text{GL1-3_off}}$		5	10	Ohm
5	VDS cut-off threshold of high-side transistor (V_{VSUP} - V_{M1-3})	Default program- ming (SEL_VTH_SC= 0)	$V_{\text{DS_off_HS_0}}$		2.5		V
6	VDS cut-off threshold of low-side transistor $(V_{M1-3}-V_{PGND})$	Default program- ming (SEL_VTH_SC= 0)	$V_{\text{DS}_\text{off}_\text{LS}_0}$		2.5		V
7	Supply current of HS driver in ON state	GH(1-3) open HS driver in ON state	I _{BST1-3_on}		250	400	uA

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
8	Mask time of VDS cut-off signal after switch-on gate driver		$T_{mask_VDS_off}$		5		us
9	VDS desaturation detection debouncing time		$T_{deb_VDS_off}$	1.5	2.5	3.5	us

4.2.3 The Control Inputs

4.2.3.1 Enable Pin

Table 4.2.3.1-1: EN Pin Electrical Parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	EN pin L/H threshold		$V_{\text{EN_LH}}$			2.6	V
2	EN pin H/L threshold		$V_{\text{EN}_{\text{HL}}}$	1.4			V
3	EN pin pull-down current		I _{EN_IN}		10		uA
4	EN pin debounce time		T _{DEB_EN}		100		us

4.2.3.2 Internal Control Ports

Table 4.2.3.2-1: Digital Inputs: Electrical Parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	RUN debounce time before entering STANDBY or SLEEP mode		T _{RUN_DEB}		500		us

4.2.4 BEMF Detection

Table 4.2.4-1: Electrical Parameters of the BEMF Detection

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Voltage divider ratio for VS and high voltage divider ratio for M[13]		$V_{VS,M[13]}/V_{BEMF_O}$	27.36	28.8	30.24	
2	Mismatch between the voltage divider ratios of M[13]			-2		2	%
3	Settling time of the BEMF detection [*]		t _{settle}			1.5	μs
4	BEMF Amp output resistance		R _{BEMF_OUT}			200	Ω

*) Not tested in production

4.2.5 Current Sense Amplifier / Overcurrent Detection

Table 4.2.5-1: Current Sense Amplifier: Electrical Parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	IP, IN input leakage current		LEAK	-1		1	μA
2	Current amplifier input offset voltage		V _{OFFSET}	-10		10	mV
3	Amplifier settling time	$\begin{array}{l} Gain = 20, \ R_{\text{FB}} = \\ 18 k \Omega, \ \ V_{\text{MP}_{-}\text{OUT}} = \\ 0.253.05 \ V \end{array}$	t _{AMP}		300	500	ns
4	AMP_OUT output resistance		R_{AMP_OUT}			200	Ω
5	AMP_OUT overcurrent threshold		V _{AMP_OUT,OC}	0.85	0.9	0.95	VDD
6	Overcurrent debounce time		t _{oc}		10		μs

*) Not tested in production

PRELIMINARY INFORMATION - Jan 18, 2017

4.2.6 Monitoring and Safety Functions

4.2.6.1 Temperature Monitoring and Over-Temperature Detection

 Table 4.2.6.1-1: Temperature Monitoring Electrical Parameters

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Overtemperature warning activation threshold ^{*)}		OT_{th_warn}	150		175	Ŝ
2	Overtemperature shut-off threshold"		$OT_{th_switch_off}$		OT _{th_wa} m + 10K		

^{*)} Not tested in production

4.3 Motor Control Unit

4.3.1 Analog Part

4.3.1.1 Core Supply Regulator

Table 4.3.1.1-1: Voltage regulator: Electrical parameter table

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	output voltage VDDC	ADC V _{REFH} trimmed	V _{OUT}	1.73	1.8	1.87	V

4.3.1.2 Oscillators and Reset

4.3.1.2.1 Power On Reset

Table 4.3.1.2.1-1: POR: Electrical parameter table

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	power on threshold (monitors VDDA)		V _{POR}	1.75	2.28	2.68	V

4.3.1.2.2 Brownout Detection

Table 4.3.1.2.2-1: Brown Out: Electrical parameter table

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	VDDIO OK Threshold (rising edge)		V _{DDIO_OK_RE}	2.8	2.9	3.0	V
2	VDDIO Brown Out Threshold (falling edge)		V _{DDIO_OK_FE}	2.7	2.8	2.9	V
3	VDDIO_OK_RE - VDDIO_OK_FE (hysteresis)		VDDIO_OK_HYST	50	100	200	mV

4.3.1.2.3 System Clock RC Oscillator

Table 4.3.1.2.3-1: Oscillators: Electrical parameter table

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	output frequency	calibrated, T = 25℃	F _{osc_sys}	47	48	49	MHz
2	frequency temperature drift*)		$TC_{F_{OSC_{SYS}}}$	-6.4	-	6.4	kHz/K
2	Inequency temperature drift		I CF_OSC_SYS	-6.4	-	6.4	

⁾ Not tested in production

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

4.3.1.2.4 Watchdog Clock RC Oscillator

Table 4.3.1.2.4-1: Oscillators: Electrical parameter table

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	output frequency	T = 25℃	F _{OSC_WDOG}	0.6	0.8	1.0	MHz

4.3.1.2.5 NRST debouncer

Table 4.3.1.2.5-1: Debouncer: Electrical parameter table

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	nReset signal debounce time pulses shorter than T _{DEBOUNCE.min} will be sup- pressed pulses longer than T _{DEBOUNCE.max} will pass the debouncer		t _{debounce}	3.0	5.0	8.0	μs

4.3.1.3 SAR-ADC

Table 4.3.1.3-1: Electrical parameter table

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	bandgap derived reference high voltage measured at ADC reference buffer output The gain error will be digitally eliminated by an automatic gain and offset compensation logic.	ADC V _{REFH} trimmed T = 25℃	V _{REFH}	2.450	2.500	2.550	V
2	resolution (bit) [*]		N	-	12	-	Bit
3	conversion rate ^{*)}	ADC clock = 12MHz	F _{CONV}	-	0.86	-	MSam ple/s
4	differential non-linearity*)	VREFL < VIN < VREFH	DNL	-1.0	-	3.0	LSB
5	integral non-linearity ^{*)}	VREFL < VIN < VREFH	INL	-4.0	-	4.0	LSB
6	input capacitance ^{*)}		CIN	3.8	4.8	5.8	pF
7	ON resistance of sample switch [*])		R _{IN}	-	-	300	Ω
8	Effective Number of Bits*)	VREFL < VIN < VREFH	ENOB	10	10.5	-	Bit
9	sampling time (number of ADC clock cycles) see ADC_CTRL.SAMPLE_EXT for addi- tional information ^{*)}		CYCLES _{SAMPLE}	2	-	-	
10	conversion time (number of ADC clock cycles) ^{*)}		CYCLES _{CONVER}	-	12	-	
11	ADC supply current when active	ADC ON	IADC_SUPPLY	-	3.0	3.5	mA
12	ADC warm-up time between ADC standby and run mode ^{•)}		t _{warm-up}	-	-	1	μs
13	ADC standby mode supply current	ADC in standby mode	I _{ADC_STANDBY}	-	0.20	0.25	mA

*) Not tested in production

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

4.3.1.4 ADC Multiplexer

Table 4.3.1.4-1: ADC Multiplexer: Electrical parameter table

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	on resistance (ESD protection + switch)		R _{on}	-	400	800	Ω
2	temperature sensor voltage (ADC channel 24)	T = 25℃	VT	1.50	1.55	1.60	V
3	VT temperature coefficient		TC _{VT}	-	-3.3	-	mV/K

4.3.1.5 IO Port Characteristics

Table 4.3.1.5-1: IO Pins: Electrical parameter table

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	IO Supply Voltage (driving to external)*)		V _{DDIO}	3.0	3.3	3.6	V
2	Schmitt-Trigger Low to High Threshold Point	no pull down or pull up enabled	V_{TP}	-	-	2.0	V
3	Schmitt-Trigger High to Low Threshold Point	no pull down or pull up enabled	V_{TN}	0.8	-	-	V
4	Pull Up Resistor	pull up enabled $V_{IN} = 0V$	R _{PU}	30.00	48.00	74.00	kΩ
5	Pull Down Resistor	pull down enabled V _{IN} = 3.3V	R_{PD}	29.00	47.00	86.00	kΩ
6	pad input capacitance ^{*)}		CIN	-	2.5	-	pF
7	Low Level Output Voltage with smaller (drv_strength=0) driver strength.	I = 4.0mA	V_{OL_4}	-	-	0.4	V
8	Low Level Output Voltage with higher (drv_strength=1) driver strength.	I = 8.0mA	V_{OL_8}	-	-	0.6	V
9	High Level Output Voltage with smaller (drv_strength=0) driver strength.	I = -4.0mA	V_{OH_4}	2.4	-	-	V
10	High Level Output Voltage with higher (drv_strength=1) driver strength.	I = -8.0mA	V_{OH_8}	2.4	-	-	V

*) Not tested in production

PRELIMINARY INFORMATION - Jan 18, 2017

5 Functional Description

5.1 System Overview

The E523.52 is a programmable brush-less 3-Phase motor controller for supply voltages from 12V to 72V. The wide operating range makes it suitable for 48V automotive, industrial and consumer applications. Operation down to 7V in Standby Mode (drivers off) allows the E523.52 to be used in 24V commercial vehicles as well.

An integrated 11V PFM (pulse frequency mode) DC-DC buck converter provides efficient, reliable gate drive and can supply other loads (Hall Sensors) up to a total of 100mA current. It is possible to bypass the buck converter to reduce component cost.

The motor interface provides protection features such as under-voltage and short-circuit protection of the 6 Power FETs. An integrated current sense amp allows current control and over-current detection.

The IC incorporates an automotive rated 16bit RISC microcontroller with 32kByte of Flash Memory and 4kBytes of RAM allowing the implementation of various motor control algorithms. The following digital modules take the computational load off the CPU:

- 16x16 bit multiply and accumulate / divide
- · concurrent hardware divider
- a table based Pre-PWM engine generates any modulation function such as SVM, flat bottom or sine
- four 16 bit PWM generators with center and edge aligned modes and dead time insertion
- a sophisticated ADC controller with an autonomous sample sequencer synchronized to the PWM generators records sample sequences autonomously to memory

EN pin activates the power supplies and the microcontroller. Nine programmable IO pins provide various interface options with the motor and the outside world. Two integrated SPI allow use of more complex communication interfaces.

The 12Bit 1MS/s successive approximation ADC can be used to sample all digital IO pins, the current sense amplifier and the back EMF interface consisting of the three motor connectors M[1-3] and the supply voltage SUP.

Internal temperature monitoring and a thermally efficient QFN package enable the E523.52 to operate close to its maximum junction temperature.

5.1.1 Die to Die Interface

The E523.52 is a dual die combination of the E523.50 driver IC and the Elmos motor controller E523.99. The following figure shows how the two IC's are interconnected.

PRELIMINARY INFORMATION - Jan 18, 2017

Figure 5.1.1-1: Internal Interconnects

The most important data signals are the six PWM lines connected to port B1/B2/B3 for the high-side gates and to port A4/A5/A6 for the low-side gates.

The CPU can activate the high-voltage gate driver by setting the "RUN" signal connected to Port A1 to "high". As long as this signal is at GND, the E523.50 will not switch the gates.

Since there is no SPI interface to read out the current status of the driver, there are two error signals "ERR1/ERR2" connected to "Port A7/B0", that notify of any abnormal operation.

The output of the integrated operational amplifier "AMP_OUT" is hard-wired to "Port B5" and can be measured by the SARADC-module.

The E523.50 has an internal multiplexer and an internal voltage divider, making it possible to measure the three phase voltages and the supply voltage directly as well as sample the status of then enable pin. With the help of the two control signals "BMUX1/2", connected to "Port A2/A3", the multiplexer of the E523.50 switches one of the motor-phases U,V or W to the output "BEMF_O". This output is connected to "Port B4" and can be measured by the SARADC of the CPU.

5.1.2 System Power Consumption

For the power loss estimation of the IC, several blocks have to be considered. The table gives an overview about the different blocks. P_{tot} is total power loss of the system.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

Block	Symbol	Calculation
Internal	P _{int}	$V_{VBAT} \cdot 200 \mu A$
DC/DC con- verter	P _{DC/DC}	$V_{VBAT} \cdot 300 \mu A + P_{LOSS,DCDC}$
VDD regulator	P _{VDD}	$(V_G - V_{DD}) * I_{SUP,VDD}$
MCU	P _{MCU}	$V_{VDD} \cdot I_{DD,48Mhz}$
Power Gate Driver	P _{PFET}	$V_{G} \cdot 1mA + 6 \cdot V_{G} \cdot Q_{PFET} \cdot f_{PWM} \cdot \frac{R_{G,on}}{R_{charge,ext} + R_{G,on}} + \frac{R_{G,off}}{R_{disscharge,ext} + R_{G,off}}$
IC	P _{tot}	$P_{int} + P_{DC/DC} + P_{VDD} + P_{MCU} + P_{PFET}$
	I _{SUP,VDD}	$I_{DD,48Mhz} + 5mA$

Table 5 1 2-1: Overview	w of system	power	consumption
	a or system	power	consumption

The switching loss ($P_{LOSS,DCDC}$) of the DC/DC is given in the following figure. The power loss depends on the V_{bat} and is calculated with the worst case assumption of 100mA as DC current at VG.

Figure 5.1.2-1: Power dissipation of DC/DC converter versus Vbat

5.1.3 Software Development and Programming

A device specific IAR Programming environment including a programming/debug interface and sample application software is available through Elmos Sales and Support.

The remainder of this datasheet will explain the general capabilities of the IC to be used as a foundation upon which software algorithms can be based.

5.1.3.1 Programming Interface

External access to the microcontroller is provided through a two wire JTAG interface. The interface lines must be connected to the device as follows:

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

JTAG Line	IC Pin Name	IC Pin Number
VREF	VDD	13
TMODE	TMODE	9
TDA	PC1	2
ТСК	PC0	1
NRSTI	NRST	10

Table 5.1.3.1-1: JTAG interace connection

5.2 Gate Driver

The gate driver is a brushless DC motor gate driver for supply voltages V_{VSUP} from 12V to 72V. The wide operating range makes it suitable for many types of industrial applications. Functionality down to $V_{VSUP,min} = 7V(min)$ in Standby mode (drivers off) allows the gate driver to be used in 24V commercial vehicles as well. An integrated, internally compensated PFM DC-DC buck converter provides $V_{VG} = 11V(typ)$ for efficient, reliable gate drive even at high supply voltages and can supply other loads (Hall Sensors) up to around 100mA. The buck converter is capable of 100% duty cycle operation which allows the gate driver to be used in 12V industrial applications as well. It is possible to bypass the buck converter by applying a voltage of 9.5V to 14V directly to its output VG and leave out the inductor to reduce component cost. In this case LX should be connected to VSUP.

VG serves as gate voltage for the 3 half-bridges and as the input of an internal $V_{VDD} = 3.3V(typ)$ linear regulator. EN activates the power supplies and RUN activates the six pin motor interface and can keep the IC active after EN has gone low to allow a microcontroller to shut down the device in a controlled manner.

The IC incorporates protection features such as: temperature warning, overcurrent, and low enhancement protection of the 6 power FETs. An integrated current sense amp allows for current control and overcurrent detection. The gain of this current sense amplifier can be programmed with external components. Motor phase resistor dividers are also integrated to ease BEMF based commutation algorithms. A two input multiplexer BEMF_MUX[1,2] selects access to the divided phase voltages and scaled down supply voltage.

5.2.1 Power Supply

The gate driver has two integrated power supplies which are activated by EN.

- 1. An integrated step-down DC-DC converter provides VVG = 11V (typ) up to 100mA for the external gates, the internal linear regulator, and optional external loads such as Hall sensors, a microcontroller through an external regulator, etc.
- 2. A linear regulator to provide VVDD = 3.3V(typ) power to the internal circuitry and the integrated motor control unit.

Both regulators will be shut down if Sleep Mode is activated by taking RUN and EN low. During startup ERR[1,2] are both at VDD level until VDD is ready and for at least $t_{RUN_DEB} = 500\mu(typ)$.

5.2.1.1 Standby, Wake-up and Shutdown

When V_{VSUP} powers up, the gate driver comes up in Sleep mode. During Sleep mode, the IC uses lowest quiescent current, LX is high impedance and the gate drivers GL[1-3] are driving the external gates low. A high level at EN for at least $T_{DEB_EN,typ} = 100 \mu s$ (typ)powers up the internal DC-DC converter, which supplies the internal 3.3V regulator as well as the gate drivers. ERR[1,2] will be high until the VDD power good level has been exceeded and the IC is ready to operate.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

Figure 5.2.1.1-1: Wake-up and Shutdown Behaviour

Sleep mode can be entered by holding RUN and EN low for at least $t_{RUN_DEB,typ} = 500 \mu s$.

Figure 5.2.1.1-2: System State Diagram

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

5.2.1.2 DC-DC Buck Converter

The E523.52 includes a DC-DC step down converter with internal compensation to provide $V_{VG} = 11V(typ)$ up to 100mA. The peak current is limited to $I_{LX} = 160mA(min)$. An internal switch connects VSUP to LX during the on time of the converter. An external freewheeling diode, an inductor and filter capacitor complete the circuit. The feedback of the DC-DC converter VG is monitored for undervoltage, the driver section gets disabled if VG drops below 8V(min) and ERR1 goes high. Power to VG and the internal VDD supply is maintained to allow for proper shutdown. The converter uses a PFM (pulse frequency mode) algorithm which allows for low standby currents and does not require external compensation.

The switching frequency f_{SWITCH} varies input voltage and load dependent but stays below 1.15MHz(max).

DC-DC Converter Bypass

For component cost reasons it may be desirable to bypass the DC-DC converter by applying an external voltage between 9.5 and 14V directly to VG and shorting LX to VSUP. The inductor can then be eliminated. The total load current at VG will be the sum of the gate current, the external load at VDD and the IC supply current.

Figure 5.2.1.2-1: DCDC switching frequency vs V_{VSUP}

5.2.1.3 VDD Supply

Power to the internal analog and digital circuitry is provided by a linear regulator supplied from VG. VDD must be buffered with an external ceramic capacitor 1μ F. VDD serves as the feedback for the regulator and as the input to the IC. If the voltage on VDD falls below the power-on reset level $V_{VDD_RSTD} = 3.1V(max)$ a high appears on ERR[1,2] to indicate VDD undervoltage.

The VDD supply is a 3.3V linear regulator which supplies the internal low-voltage circuitry and external loads up to 30mA. The regulator input voltage is VG.

5.2.2 Power FET Gate Drivers

The low-side drivers GL[1-3] are powered from VG and return the gate current to GND, the high-side drivers GH[1-3] are powered from BST[1-3] and return the gate current to the motor connection M[1-3]. A bootstrap circuit consisting of a diode and a capacitor must be connected to each high-side driver to level shift its gate voltage. 100% duty cycle is possible within limits.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

The drivers have a simple protection against shortcircuit of individual driver FETs and shoot through current through one B6 branch: A simple digital lock prevents both high-side and low-side from being activated simultaneously, and if the drain to source voltage across an active FET exceeds $V_{DS_OFF} = 2.5V$ (typ) the branch is turned off and overcurrent error is asserted via a high on both error flags ERR[1,2].

5.2.2.1 Block Diagram

Figure 5.2.2.1-1: Half-Bridge Driver: Block diagram

5.2.2.2 Short-Circuit Protection

The drain-source voltage of all 6 Power-FETs in ON state (both highside drivers and lowside drivers) is monitored and compared with a reference voltage by short-circuit comparators for overcurrent and short-circuit detection. The typical comparator threshold is about 2.5V.

The short circuit detection is enabled about 5us after the L/H transition of the corresponding PWM input signal which switches on the Power-FET. Then the detection of a short-circuit condition switches off the corresponding FET driver after T_{deb,VDS_off} and reports an error via the ERR pins. The error diagnosis remains active until pin RUN is switched to Low. The FET driver will be disabled until the error condition is cleared.

5.2.2.3 Behaviour in STANDBY and SLEEP mode

In STANDBY mode and in SLEEP mode the gates of all high side drivers and low-side drivers are switched to Low, so all Power-FETs are switched-off. The short-circuit comparators are not active.

5.2.3 The Control Inputs

5.2.3.1 Enable Pin

The enable pin EN is used to wake up the IC from SLEEP mode. EN is a high-voltage pin and can be directly connected to VSUP, but the switching threshold is in the low-voltage range.

Note: The wake up sequence can only be finished when V_{VG} exceeds V_{VG_UV} . This means correct BEMF measurement scaling will be available only after V_{VG} exceeded V_{VG_UV} after wake up.

5.2.3.2 Internal Control Ports

The gate driver has a RUN input to activate RUN mode and 6 digital PWM control ports. The ports are internal controlled by the motor control unit. While RUN is low after wake-up, the IC is in STANDBY mode and the gate driver

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

outputs GH(1-3) and GL(1-3) are driven off. Once RUN has gone to high to activate the RUN mode, RUN must remain low longer than $T_{RUN_{DEB}}$ typ. 500us to enter STANDBY mode again. If EN is low in STANDBY mode, the IC enters SLEEP mode.

5.2.4 BEMF Detection

Back-EMF transition detection is done by sampling the un-driven motor phase during a PWM period until the value passes $V_{VSUP/2}$. This transition is used to advance the motor commutation to the next phase for example in block commutation. The motor driver has an integrated BEMF divider circuit to be used as input for an ADC in the micro-controller. The circuit consists of four voltage dividers, an analogue multiplexer and a buffer. The inputs are taken from the motor phases M[1-3] and the supply voltage. The buffered output appears at BEMF_O. To provide low voltage EN pin monitoring, the supply voltage measurement channel (BEMF_MUX[1,2]=00)will read GND if the EN pin has gone low.

Figure 5.2.4-1: Block Diagram of the BEMF Detection

The output at BEMF_O can be selected via the pins BEMF_MUX1 and BEMF_MUX2. The supply and the motor phase voltage are always scaled by a factor of 1/28.8(typ). The gain settings are defined when the IC enters Run mode.

Table 5.2.4-1: BEMF_MUX1 and BEMF_MUX2 function

BEMF_MUX2	BEMF_MUX1	Function
0	0	Supply voltage selected,GND if EN is
		low.
0	1	Motor phase M1 selected
1	0	Motor phase M2 selected
1	1	Motor phase M3 selected

5.2.5 Current Sense Amplifier / Overcurrent Detection

An integrated high speed OPAMP helps measure the system current across a low side shunt resistor and triggers the overcurrent detection. The amplifier is only active during RUN mode (RUN = High). Amplifier gain and offset are dimensioned by connecting an external resistor network between IN, IP and AMP_OUT. The shunt resistor and gain have to be adjusted to the full scale input range of the ADC in the microprocessor.

If the output voltage at AMP_OUT exceeds 90% of the VDD supply: $V_{AMP_OUT,OC} = 3.0V(typ)$ an overcurrent event is reported. For dimensioning information of the amplifier circuit see section.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

5.2.6 Monitoring and Safety Functions

The motor driver can detect and report undervoltage, overtemperature, and overcurrent. These errors are reported as active high on the pins ERR1 and ERR2 in the following way.

Table 5.2.6-1: Error Diagnosis

Failure	RUN	ERR2	ERR1	Comment
No error	0/1	0	0	
VG Undervoltage	1	0	1	not latched
Overtemperature	1	1	0	not latched
Overcurrent/SC	1	1	1	latched
VDD Undervoltage	0/1	1	1	not latched

5.2.6.1 VG Monitoring / Under-Voltage Detection

To protect the external FETs from operating in their linear region and experiencing thermal stress, VG is observed. If VG falls below V_{VG_UV} =9.5V(max) undervoltage condition is reported on the ERR1 output. Undervoltage will shut down the driver stage. If VG recovers the ERR1 will go high and the IC will release the output stage.

5.2.6.2 Temperature Monitoring and Over-Temperature Detection

If the IC temperature exceeds $OT_{th_warn}=+150 \,^{\circ}C(min)$, an overtemperature warning is reported, the system will keep running, but should be shut down as fast as possible. The overtemperature condition is not latched and clears on its own once the temperature returns below the threshold. If the temperature exceeds $OT_{th_switch_off}=+160 \,^{\circ}C$ (min) the IC will shut down its power supplies and enter Sleep mode.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

Figure 5.2.6.2-1: Over-Temperature Indication and Shut Down

5.2.6.3 Overcurrent/Fet short-circuit

An overcurrent comparator observes the output of the current sense amp. If the voltage on VAMP_OUT exceeds $V_{AMP_OUT,OC} = 3V(typ)$ for longer then $t_{OC} = 10\mu s(typ)$ the drivers are turned off and an overcurrent event is indicated. The drivers will stay off until the error is cleared. To clear this error, cycle the RUN input between low and high. Driver shortcircuit is detected by monitoring the voltage drop across each individual FET. If, during operation, the voltage across a FET exceeds $V_{DS_OFF} = 2.5V(typ)$, the corresponding half-bridge is disabled, until RUN is cycled to clear the error. The drain-source voltage of all 6 Power-FETs in ON state (both highside drivers and lowside drivers) is monitored and compared with a reference voltage by short-circuit comparators for overcurrent and short-circuit detection.

The typical comparator threshold is about 2.5V. The short circuit detection is enabled about 5μ s after the L/H transition of the corresponding PWM input signal which switches on the Power-FET. Then the detection of a short-circuit condition switches off the corresponding FET driver after T_{deb,VDS_off} and reports an error via the ERR pins. The error diagnosis remains active until pin RUN is switched to Low. The FET driver will be disabled until the error condition is cleared.

5.2.6.4 VDD Undervoltage

The VDD undervoltage signal can be used to check for VDD integrity before activating the system. As long as RUN=Low a high on both ERR bits indicates VDD undervoltage. During RUN mode, ERR[1,2] = High could indicate an undervoltage event or an overcurrent event. Immediate shutdown (RUN=Low) should be the response in either

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

case, if the ERR signals remain high a VDD undervoltage was the cause, if the ERR signals go low, it was an overcurrent event.

5.3 Motor Control Unit

5.3.1 Analog Part

5.3.1.1 Core Supply Regulator

The regulator generates the digital core voltage VDDC from VDDIO. It receives an internal 1.8V reference voltage derived from the bandgap voltage and regulates with it the digital core voltage VDDC. The external Buffer Capacitance CDDC is connected to the output.

5.3.1.2 Oscillators and Reset

Oscillators:

- System Clock RC Oscillator
- Watchdog Clock RC Oscillator

System Reset Sources:

- Power ON reset
- Power watches for brownout detection
- Reset inputs (device pin)
- Several digital core exceptions
- For details see SYS_STATE module RESET_STATUS and RESET_ENABLE registers.

5.3.1.2.1 Power On Reset

The Power-On-Reset is connected to the VDDA Power Supply. Its main purpose is to reset the level shifter from the VDDC to VDDIO voltage domain.

The Power-On-Reset will assert a system reset on system start-up

5.3.1.2.2 Brownout Detection

There are two Brown-Out watches:

- one for the VDDIO voltage
- one for the VDDC voltage

Since VDDIO is bonded onto the same pin as VDDA in current targeted applications the brown-out effectively monitors VDDA and VDDIO voltage for outages.

In case the device will be used in an application where the two pins will be supplied by independent power supplies no reset may be generated if the VDDA supply fails!

- VDDC brownout will cause a System Reset when VDDC falls below brownout (VDDC_OK_FE) level
- VDDIO brownout will cause a System Reset when VDDIO falls below brownout (VDDIO_OK_FE) level

5.3.1.2.3 System Clock RC Oscillator

This oscillator clocks the digital system.

5.3.1.2.4 Watchdog Clock RC Oscillator

The oscillator is used to clock a part of the digital watchdog module.

5.3.1.2.5 NRST debouncer

NRST low active reset input signal debouncer - prevents system from reset by short spikes.

5.3.1.3 SAR-ADC

The pin AIN is the input to a single ended SAR ADC with a resolution of 12 Bits and at least an effective number of 10 Bits. The ADC has a single high reference voltages of 2.5V derived from the bandgap voltage reference. The low reference voltage is fixed to VSSA.

PRELIMINARY INFORMATION - Jan 18, 2017

5.3.1.4 ADC Multiplexer

The ADC multiplexer is switching one of 25 input signals to the ADC amplifier. Channel 0-23 for IO port PA0-7, PB0-7, PC0-7 and channel 24 for temperature sensor voltage.

5.3.1.5 IO Port Characteristics

These are modified digital standard pads.

They have a configurable driver strength of 4 or 8mA (See SYS_STATE Module Registers).

Pad pull configuration:

- IO port pads do not have a pull resistance.
- TMODE will have a pull-down resistance
- NRST and NRSTI will have a pull-up resistance

An analog signal by-pass path is added to the standard pads. So each digital pad can be used as analog input (ADC). A double-switch with in between a switch-to-ground-connection is added to the standard pad.

5.3.2 Digital Part

5.3.2.1 Base Addresses

Table 5.3.2.1-1: Address Table

base address	size	module name	instance name	description
0x8000	0x8000	FLASH	FLASH	FLASH Memory
0x4000	0x4000	SYS_ROM	SYS_ROM	System ROM Memory
0x1000	0x1000	SRAM	SRAM	SRAM Memory
0x0600	0x80	PWMN	PWMN	Motor PWM Module
0x0580	0x80	PRE_PWM	PRE_PWM	Pre-PWM Module
0x0500	0x80	ADC_CTRL	ADC_CTRL	ADC Control Module
0x0480	0x40	CCTIMER	CCTIMER_3	Capture Compare Timer Module Instance 3
0x0440	0x40	CCTIMER	CCTIMER_2	Capture Compare Timer Module Instance 2
0x0400	0x40	CCTIMER	CCTIMER_1	Capture Compare Timer Module Instance 1
0x03C0	0x40	CCTIMER	CCTIMER_0	Capture Compare Timer Module Instance 0
0x0380	0x40	GPIO	GPIO_C	GPIO Module Port C Instance
0x0340	0x40	GPIO	GPIO_B	GPIO Module Port B Instance
0x0300	0x40	GPIO	GPIO_A	GPIO Module Port A Instance
0x02C0	0x40	SCI	SCI	LIN SCI Module
0x0280	0x40	SPI	SPI_1	SPI Module 1
0x0240	0x40	SPI	SPI_0	SPI Module 0
0x0200	0x40	IOMUX_CTRL	IOMUX_CTRL	IO Multiplexer Config Module
0x01C0	0x40	FLASH_CTRL	FLASH_CTRL	FLASH Control Module
0x0180	0x40	SYS_STATE	SYS_STATE	System State Module
0x0140	0x40	DIVIDER	DIVIDER	Divider Module
0x0100	0x40	H430_MUL	H430_MUL	H430 Multiplier Module
0x00C0	0x40	MEM_PROT	MEM_PROT	Memory Protection Module
0x0080	0x40	WDOG	WDOG	Watchdog Module
0x0040	0x40	VIC	VIC	Vector Interrupt Controller Module
0x0000	0x40	ROM	ROM	Startup ROM

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

5.3.2.2 Memory IP's

5.3.2.2.1 FLASH

The micro controller system includes one instance of a FLASH IP which are mapped into the address space as defined by the above Memory Map Table.

This FLASH IP block consists of two logical blocks: a large one which is called MAIN block and a small one which is called INFO block. MAIN and INFO block cannot be accessed at the same time. A FLASH mode change is required to do this. The FLASH instance is controlled by a FLASH_CTRL module.

- FLASH MAIN area size: 32K byte
 - the INFO area consists of 2 pages
 - the upper page contains the INFO boot code which is described in the System Start-up chapter
 - the lower page can be used for other purpose
- FLASH area size: 32Kbyte
- FLASH includes a 6 bit ECC per 16 bit data -> Hamming distance 4
- SEC-DED logic (single error correction double error detection)
- FLASH IP geometry:
 - 32K byte = 8K x 32 (44) bit
 - MAIN block: 64 pages
 - INFO block: 2 pages
 - 1 page = 128 x 32 (44) bit = 4 rows
 - 1 row = 32 x 32 (44) bit

5.3.2.2.2 System ROM (SYS_ROM)

- size: 16Kbyte
- read only
- contains standard LIN routines which can be used by the the executed user program and a boot loader program (see "boot code flow chart") or alternative "re-flash via LIN" support routines, which can also be started from the executed user program.

The System ROM content may vary depending on customer requirements and may contain for example:

- a standard ELMOS boot loader
- · a customer specific boot loader delivered by ELMOS
- a customer boot loader

5.3.2.2.3 SRAM

- size: 4Kbyte
- · byte write support
- per byte parity protection

5.3.2.2.4 Memory Access Protection

- CPU and memory access is protected by a logic which has to be set up via JTAG with the correct 64 bit signature value to allow full system access.
 - This signature value depends on the 8 bit customer ID register value of SYS_STATE module which is set and locked during device INFO BOOT before JTAG can halt device for debug purpose.
 - a customer ID and signature database is maintained by ELMOS
 - 253 signatures (customers) are possible

5.3.2.3 System Start-up

The digital system start up is done as follows:

- The CPU executes the Startup ROM code which checks the FLASH INFO memory for a valid boot vector (which points into FLASH INFO memory area).
 - If a valid FLASH INFO memory boot vector exists:
 - The CPU executes the FLASH INFO memory start up code which usually is used to initialize the micro controller analog part calibration registers as well as the analog IC calibration data. The calibration data may be included in the FLASH INFO memory code.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

- The FLASH INFO memory start up code may check the System ROM for a boot loader and execute it, depending on the system configuration.
 - Please see the system boot loader concept application note for details.
 - The following sequence also depends on the system boot loader concept.
 - One possible behaviour may be:
 - The CPU returns to FLASH INFO memory boot code.
- The CPU returns to ROM start up code.
- The CPU switches to FLASH MAIN memory area access.
- The CPU fetches the user program reset vector which is located at address 0xFFFE in the FLASH MAIN memory which also enables the JTAG interface for CPU debugging.
- The CPU starts executing the user program.

Note: the FLASH INFO memory start up code area is only visible during ROM start up code execution and will not be accessible during user program execution.

Boot code flow chart:

Figure 5.3.2.3-1: boot code flow chart

5.3.2.4 CPU - H430 Features

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

- 16 bit CPU
- MSP430 binary code compatible
- Harvard architecture with AHBL data and instruction bus interfaces
- RISC architecture with 27 instructions and 7 addressing modes
- Orthogonal architecture: every instruction usable with every addressing mode
- · Full register access including program counter, status registers, and stack pointer
- 16 x 16-bit register
- 64 KByte linear address space
- 16-bit native data bus width
- · Constant generator provides six most used immediate values and reduces code size
- Direct memory-to-memory transfers without intermediate register holding
- Word and byte addressing and instruction formats
- IAR development IDE compatible JTAG debug interface
- Several C compilers are available

Figure 5.3.2.4-1: H430 Environment Example

Interrupts

The embedded H430 IP core does not contain a primary interrupt controller. It has only a IRQ request signal and an address, pointing to a vector table in memory, which contains addresses of the interrupt handlers. Therefore the H430 IP does not support a fixed number of interrupts. Any number fitting reasonable in the 64k memory range is supported.

All interrupts can be enabled or disabled with the GIE bit in the status register.

Handling an interrupt (other than RESET) consists of:

- Push PC on stack.
- Push SR on stack.
- Choose the highest priority interrupt to service.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

- If there are multiple possible sources, leave them for software to poll.
- Clear the SR, which disables interrupts and power-saving.
- Fetch the interrupt vector into the PC
- Start executing the interrupt handler

A reset is similar, but doesn't save any state.

You can nest interrupt handlers by disabling the current source and setting the GIE bit back to 1.

Byte and Word Issues

The H430 is byte-addressed, and Little-Endian. Word operands must be located at even addresses. Most instructions have a byte/word bit, which selects the operand size. Appending ".B" to an instruction makes it a byte operation. Appending ".W" to an instruction, to make it a word operation, is also legal. However, since it is also the default behavior, if you add nothing, it is generally omitted.

A byte instruction with a register destination clears the high 8 bits of the register to 0. Thus, the following would clear the top byte of the register, leaving the lower byte unchanged:

MOV.B Rn,Rn

Mostly the on-chip peripherals supports only one bus size, e.g. the data width of the processor. These peripherals must be accesses only with the supported access mode and with correct alignment. Any other access may produce an undefined behavior.

When performing a word access, address bit 0 is undefined and has to be ignored.

CPU States

The CPU supports the following states:

state	description
RUN	 normal operation of the CPU the CPU accesses program storage (e.g. Flash) and RAM the CPU returns to RUN state on any interrupt
STANDBY	 the CPU is halted the STANDBY state is entered when setting standby flag (CPUOFF) in status register the CPU does not access program storage or RAM the CPU returns to RUN state on any interrupt

CPU Standby Entry

After setting the standby bit in the CPU status register the following instruction will be executed, then standby mode will be entered. A good idea is to use the following sequence to ensure a later wake up.

BIS #0x18, SR ; sets standby flag and enables interrupts for wake up NOP ; needed for correct standby entry behavior

CPU Standby Exit

- an interrupt will force the CPU to exit the standby mode. The CPU will enter the interrupt service routine directly.
- after the interrupt routine has been finished the CPU will NOT return to previous standby mode.
- a system reset (e.g. by the watchdog) will restart the device and therefore exit the standby mode.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

5.3.2.4.1 CPU Registers

The processor has 16 16-bit registers, although only 12 of them are truly general purpose. The first four have dedicated uses:

5.3.2.4.1.1 Program Counter (PC)

The 16-bit Program Counter (PC/R0) points to the next instruction to be executed. Each instruction uses an even number of bytes (two, four, or six), and the PC is incremented accordingly. Instruction accesses in the 64-KB address space are performed on word boundaries, and the PC is aligned to even addresses. The PC can be addressed with all instructions and addressing modes.

5.3.2.4.1.2 Stack Pointer (SP)

The Stack Pointer (SP/R1) is used by the CPU to store the return addresses of subroutine calls and interrupts. It uses a pre-decrement, post-increment scheme. In addition, the SP can be used by software with all instructions and addressing modes. The SP is initialized into RAM by the user, and is aligned to even addresses.

5.3.2.4.1.3 Status Register (SR)

The Status Register (SR/R2), used as a source or destination register, can be used in the register mode only addressed with word instructions. The remaining combinations of addressing modes are used to support the constant generator.

Table 5.3.2.4.1.3-1: Register Table

Register Name	Address	Description
Status Register	SR/R2	

Table 5.3.2.4.1.3-2: Register Status Register (SR/R2)

	MSB															LSB
Content	-	-	-	-	-	-	-	8	-	-	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	8 : V 5 : OS 4 : CF 3 : GI 2 : N 1 : Z 0 : C	SC OF PU OF E	F													

V: Overflow bit

This bit is set when the result of an arithmetic operation overflows the signed-variable range.

OSCOFF: Stop flag

OSCOFF (oscillator off), and CPUOFF are used to enter low-power states. OSCOFF may not be evaluated by the system if other clock controllers are implemented

CPUOFF: Standby flag

See "CPU States" for details

GIE: Global Interrupt Enable

GIE is the global interrupt enable. Turning off this bit masks interrupts. (NOTE: it may be delayed by 1 cycle, so an interrupt may be taken after the instruction after GIE is cleared. Add a NOP or clear GIE one instruction earlier than your "critical section".)

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

N: Negative bit

This bit is set when the result of a byte or word operation is negative and cleared when the result is not negative. Word operation: N is set to the value of bit 15 of the result Byte operation: N is set to the value of bit 7 of the result

Z: Zero bit

This bit is set when the result of a byte or word operation is 0 and cleared when the result is not 0.

C: Carry bit

This bit is set when the result of a byte or word operation produced a carry and cleared when no carry occurred.

5.3.2.4.1.4 Constant Generation Registers (CG1 / CG2)

Six commonly-used constants are generated with the constant generator registers R2 and R3, without requiring an additional 16-bit word of program code. This is one of the important features of the H430 instruction set, allowing it to achieve a high level of code density, and a flexible instruction set.

These constant registers can provide the numbers -1, 1, 2, 4 or 8. So, for example, the "CLR x" is actually emulated by the instruction "MOV #0,x". The constant "0" is taken from the constant register r3. The assembler understands both "CLR x" and "MOV #0,x", and produces the same code for either.

The constants are selected with the source-register addressing modes (As):

Register	As	Value	Remarks
R2	00	-	register mode (access R2)
R2	01	(0)	used for absolute address mode
R2	10	0x0004	constant +4
R2	11	0x0008	constant +8
R3	00	0x0000	constant 0
R3	01	0x0001	constant +1
R3	10	0x0002	constant +2
R3	11	0xFFFF	constant -1

Table 5.3.2.4.1.4-1: Register Table

The constant generator advantages are:

- No special instructions required
- No additional code word for the six constants
- · No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six constants is used as an immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed explicitly; they act as source-only registers.

5.3.2.4.1.5 General Purpose Registers (R4 - R15)

The twelve registers, R4-R15, are general-purpose registers. All of these registers can be used as data registers or address pointers and can be used with byte or word instructions.

5.3.2.4.2 Addressing Modes

The available H430 instruction addressing modes have at most two operands, a source and a destination. All instructions are 16 bits long, followed by at most two optional offsets words, one for each of the source and the destination.

As Modes

PRELIMINARY INFORMATION - Jan 18, 2017

The source operand is specified with 2 addressing mode bits (As):

Table 5.3.2.4.2-1: As Modes

As	mnemonic	remarks
00	Rn	Register direct
01	X(Rn)	Register indexed
10	@Rn	Register indirect
11	@Rn+	Register indirect with post-increment

Ad Modes

The destination operand is specified with 1 addressing mode bit (Ad):

Table 5.3.2.4.2-2: Ad Modes

Ad	mnemonic	remarks
0	Rm	Register direct
1	Y(Rm)	Register indexed

The only addressing mode that uses an extension word is the indexed mode.

The destination operand in a two-operand instruction has only one addressing mode bit, which selects either register direct or indexed. Register indirect can obviously be faked up with a zero index.

When r0 (the program counter) is used as a base address, indexed mode provides PC-relative addressing. This is, in fact, the usual way that the H430 assembler accesses operands when a label is referred to.

@r0 just specifies the following instruction word, but @r0+ specifies that word and skips over it. In other word, an immediate constant! You can just write #1234 and the assembler will specify the addressing mode properly. r1, the stack pointer, can be used with any addressing mode, but @r1+ always increments by 2 bytes, even on a

byte access.

Table 5.3.2.4.2-3: Addressing Mo	des Table
----------------------------------	-----------

As/Ad	Addressing Mode	Syntax	Description
00/0	Register mode	Rn	Register contents are oper- and
01/1	Indexed mode	X(Rn)	(Rn + X) point to the oper- and. X is stored in the next word.
01/1	Symbolic mode	ADDR	(Rn + X) point to the oper- and. X is stored in the next word. Indexed mode X(PC) is used.
01/1	Absolute mode	&ADDR	(Rn + X) point to the oper- and. X is stored in the next word. Indexed mode X(0) is used.
10/-	Indirect Register mode	@Rn	Rn is used as a pointer to the

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

As/Ad	Addressing Mode	Syntax	Description
11/-	Indirect auto increment	@Rn+	Rn is used as a pointer to the operand. Rn is incre- mented afterwards by 1 for .B instructions and by 2 for .W instructions
11/-	Immediate mode	#N	The word following the instruction contains the immediate constant N. Indirect auto-increment mode @PC+ is used.

Register Direct

Table 5.3.2.4.2-4: Register Direct

Assembler Code	MOV R10,R11
Length	One or two words
Operation	Move the content of R10 to R11. R10 is not affected.
Comment	Valid for source and destination
Note	The data in the register can be accessed using word or byte instructions. If byte instruc- tions are used, the high byte is always 0 in the result. The status bits are handled accord- ing to the result of the byte instruction.

Register Indexed

Table 5.3.2.4.2-5:	Register Indexed
--------------------	------------------

Assembler Code	MOV 2(R5),6(R6)
Length	Two or three words
Operation	Move the contents of the source address (contents of $R5 + 2$) to the destination address (contents of $R6 + 6$). The source and destination registers ($R5$ and $R6$) are not affected. In indexed mode, the program counter is incremented automatically so that program execution continues with the next instruction.
Comment	Valid for source and destination

Register Indirect

Table 5.3.2.4.2-6: Register Indirect

Assembler Code	MOV @R10,0(R11)
Length	One or two words
Operation	Move the contents of the source address (contents of R10) to the destination address (contents of R11). The registers are not modified.
Comment	Valid only for source operand. The substitute for destination operand is 0(Rd).

Register Indirect with post increment

Table 5.3.2.4.2-7: Register Indirect with post-increment

Assembler Code	MOV @R10+,0(R11)
Length	One or two words

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

Operation	Move the contents of the source address (contents of R10) to the destination address (contents of R11). Register R10 is incremented by 1 for a byte operation, or 2 for a word operation after the fetch; it points to the next address without any overhead. This is useful for table processing.
Comment	Valid only for source operand. The substitute for destination operand is 0(Rd) plus second instruction INCD Rd.

5.3.2.4.3 Instruction Set

The complete H430 instruction set consists of 27 core instructions and 24 emulated instructions. The core instructions are instructions that have unique op-codes decoded by the CPU. The emulated instructions are instructions that make code easier to write and read, but do not have op-codes themselves, instead they are replaced automatically by the assembler with an equivalent core instruction. There is no code or performance penalty for using emulated instruction.

All instructions are 16 bits long, and there are only three instruction formats:

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
dual operand		oper	ation			S-I	reg		Ad	в	A	s	D-reg			
single-operand	0	0	0	1	0	0	operation		A	As D-reg						
jump	0	0	1	с	onditio	n	PC offset (10 bit)									

Figure 5.3.2.4.3-1: Instruction Coding

All single-operand and dual-operand instructions can be byte or word instructions by using .B or .W extensions. Byte instructions are used to access byte data or byte peripherals. Word instructions are used to access word data or word peripherals. If no extension is used, the instruction is a word instruction. The source and destination of an instruction are defined by the following fields:

Table 5.3.2.4.3-1: Source and destination of an instruction

Abbr.	Description
src	The source operand defined by As and S-reg
dst	The destination operand defined by Ad and D-reg
As	The addressing bits responsible for the addressing mode used for the source (src)
S-reg	The working register used for the source (src)
Ad	The addressing bits responsible for the addressing mode used for the destination (dst)
D-reg	The working register used for the destination (dst)
B/W	Byte or word operation: 0: word operation 1: byte operation

Dual Operand Instructions

These basically perform dst = src op dst operations. However, MOV doesn't fetch the destination, and CMP and BIT do not write to the destination. All are valid in their 8 and 16 bit forms.

+ The status bit is affected

- The status bit is not affected

0 The status bit is cleared

1 The status bit is set

PRELIMINARY INFORMATION - Jan 18, 2017

Opcode	Mnemonic	S-Reg, D-Reg	Operation	V	N	Z	С	Remark
0100	MOV(.B)	src, dst	dst = src	-	-	-	-	The status flags are NOT set.
0101	ADD(.B)	src, dst	dst += src	+	+	+	+	
0110	ADDC(.B)	src, dst	dst += src + C	+	+	+	+	
1000	SUB(.B)	src, dst	dst += ~src + 1	+	+	+	+	
0111	SUBC(.B)	src, dst	dst += ~src + C	+	+	+	+	
1001	CMP(.B)	src, dst	dst - src	+	+	+	+	Sets status only; the des- tination is not written.
1010	DADD(.B)	src, dst	dst += src + C, BCD	0	+	+	+	
1011	BIT(.B)	src, dst	dst & src	0	+	+	+	Sets status only; the des- tination is not written.
1100	BIC(.B)	src, dst	dst &= ~src	-	-	-	-	The status flags are NOT set.
1101	BIS(.B)	src, dst	dst = src	-	-	-	-	The status flags are NOT set.
1110	XOR(.B)	src, dst	dst ^= src	+	+	+	+	
1111	AND(.B)	src, dst	dst &= src	0	+	+	+	

Table 5.3.2.4.3-2: Dual Operand Instructions

Single Operand Instructions

The status flags are set by RRA, RRC, SXT, and RETI. The status flags are NOT set by PUSH, SWPB, and CALL.

+ The status bit is affected

- The status bit is not affected

0 The status bit is cleared

1 The status bit is set

Table 5.3.2.4.3-3: Single Operand Instructions

Opcode	Mnemonic	S-Reg, D-Reg	Operation	V	N	Ζ	С	Remark
000	RRC(.B)	dst	C -> MSB -> -> LSB -> C	0	+	+	+	9-bit rotate right through carry. Clear the carry bit beforehand to do a logical right shift.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

Opcode	Mnemonic	S-Reg, D-Reg	Operation	V	N	Z	С	Remark
010	RRA(.B)	dst	MSB -> MSB -> LSB -> C	0	+	+	+	Badly named, this is an 8-bit arithmetic right shift.
100	PUSH(.B)	src	SP-2 -> SP src -> @SP	-	-	-	-	Push operand on stack. Push byte decre- ments SP by 2.
001	SWPB	dst	swap bytes	-	-	-	-	The destina- tion operand high and low bytes are exchanged. This has no byte form.
101	CALL	SrC	SP-2 -> SP PC+2 -> @SP src -> PC	-	-	-	-	Fetch operand, push PC, then assign oper- and value to PC. Note: the immediate form is the most com- monly used. There is no easy way to perform a PC- relative call; the PC-relative addressing mode fetches a word and uses it as an absolute address. This has no byte form.
110	RETI		TOS -> SR SP+2 -> SP TOS -> PC SP+2 -> SP	+	+	+	+	Pop SP, then pop PC. Note: The CPUOFF flag will not be stored to stack on interrupt entry, so the CPU will NOT return to low- power mode it was previously in
E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

Opcode	Mnemonic	S-Reg, D-Reg	Operation	V	N	Ζ	С	Remark
011	SXT	dst	Bit 7 -> Bit 8Bit 15	0	+	+	+	Sign extend 8 bits to 16. No
								byte form.

Emulated Instructions

There are a number of zero- and one-operand pseudo-operations that can be built from these two-operand forms. These are usually referred to as "emulated" instructions:

Table 5.3.2.4.3-4: Emulated Instructions

Instruction	Emulation	Remark
NOP	MOV r3,r3	Any register from r3 to r15 would do the same thing. Note: that other forms of a NOP instruction can be constructed as emu- lated instructions, which take different numbers of cycles to execute. These can sometimes be useful in constructing accurate timing patterns in software.
POP dst	MOV @SP+,dst	
BR dst	MOV dst,PC	Branch and return can be done by moving to PC (r0)
RET	MOV @SP+,PC	Branch and return can be done by moving to PC (r0)
CLRC	BIC #1,SR	The constants were chosen to make status register (r2) twiddling efficient
SETC	BIS #1,SR	The constants were chosen to make status register (r2) twiddling efficient
CLRZ	BIC #2,SR	The constants were chosen to make status register (r2) twiddling efficient
SETZ	BIS #2,SR	The constants were chosen to make status register (r2) twiddling efficient
CLRN	BIC #4,SR	The constants were chosen to make status register (r2) twiddling efficient
SETN	BIS #4,SR	The constants were chosen to make status register (r2) twiddling efficient
DINT	BIC #8,SR	The constants were chosen to make status register (r2) twiddling efficient
EINT	BIC #8,SR	The constants were chosen to make status register (r2) twiddling efficient
RLA(.B) dst	ADD(.B) dst,dst	Shift and rotate left is done with add
RLC(.B) dst	ADDC(.B) dst,dst	Shift and rotate left is done with add
INV(.B) dst	XOR(.B) #-1,dst	Some common one-operand instructions
CLR(.B) dst	MOV(.B) #0,dst	Some common one-operand instructions
TST(.B) dst	CMP(.B) #0,dst	Some common one-operand instructions
DEC(.B) dst	SUB(.B) #1,dst	Increment and decrement (by one or two)
DECD(.B) dst	SUB(.B) #2,dst	Increment and decrement (by one or two)
INC(.B) dst	ADD(.B) #1,dst	Increment and decrement (by one or two)
INCD(.B) dst	ADD(.B) #2,dst	Increment and decrement (by one or two)
ADC(.B) dst	ADDC(.B) #0,dst	Increment and decrement carry.
DADC(.B) dst	DADD(.B) #0,dst	Increment and decrement carry.
SBC(.B) dst	SUBC(.B) #0,dst	Increment and decrement carry.

Relative Jumps

Conditional jumps support program branching relative to the PC and do not affect the status bits. The possible jump range is from -511 to +512 words relative to the PC value at the jump instruction. The 10-bit program-counter offset is treated as a signed 10-bit value that is doubled and added to the program counter:

PRELIMINARY INFORMATION - Jan 18, 2017

PCnew = PCold + 2 + PCoffset × 2

Table 5.3.2.4.3-5: Relative Jumps

Opcode	Mnemonic	Jump Condition
000	JNE/JNZ	Z == 0
001	JEQ/JZ	Z == 1
010	JNC/JLO	C == 0
011	JC/JHS	C == 1
100	JN	N == 1
101	JGE	N == V
110	JL	N != V
111	JMP	unconditionally

5.3.2.4.4 Instruction Cycle Counts

command type	operation	cycles (dreg != PC)	cycles (dreg == PC)
	-		
MOV	sreg -> dreg	1	2
DOUBLE	sreg x dreg -> dreg	1	2
MOV	sreg -> Y(dreg)	2	
DOUBLE	sreg x Y(dreg) -> Y(dreg)	4	
MOV	@sreg -> dreg	3	4
DOUBLE	@sreg x dreg -> dreg	3	4
MOV	@sreg -> Y(dreg)	3	
DOUBLE	@sreg x Y(dreg) -> Y(dreg)	5	
MOV	#N -> dreg	2	3
DOUBLE	#N x dreg -> dreg	2	3
MOV	Øsreg+ -> dreg	3	4
DOUBLE	@sreat x drea -> drea	3	4
MOV	#N -> Y(dreg)	3	
	$\#N \times Y(dreg) \rightarrow Y(dreg)$	5	
MOV	Øsreat -> V(drea)	3	
	$(arcg) \rightarrow (arcg)$	5	
DOODLL			
MOV	X(sreg) -> dreg	4	5
DOUBLE	X(sreg) x dreg -> dreg	4	5
MOV	X(sreg) -> Y(dreg)	3	
DOUBLE	X(sreg) x Y(dreg) -> Y(dreg)	5	
SINGLE	drea	1	2
SINGLE	Ødreg	3	_
SINGLE	#N	2	
SINGLE	@drea+	3	
SINGLE	Y(dreg)	4	
ILIMP		2	
RETI		4	
IRQE		3	
BUCH			
PUSH	leg	1	
PUSH	Cleg	2	
PUSH	#IN	2	
PUSH	@reg+	2	
PUSH	X(reg)	3	
CALL	reg	2	
CALL	Øreg	3	
CALL	#N	3	
CALL	Ørea+	3	
CALL	X(reg)	4	

notes: SINGLE includes RRC, RRA, SWPB and SXT DOUBLE includes all double operand instructions except MOV

Figure 5.3.2.4.4-1: Cycle Count Table

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

5.3.2.4.5 JTAG Debug Interface

To access the debug structures a standard JTAG interface is used.

The debugging logic provides the following features:

- CPU register read and write access
- Data bus (memory) read and write access
- Breakpoint logic
- IAR can be use as debug IDE

The H430 embedded breakpoint logic provides the following features:

- 3 breakpoint triggers
- each trigger can match a separate address or data bus value
- a trigger value compare mask can be defined
- trigger can match a greater, smaller, equal or non equal value
- trigger can be configured for read / write or instruction fetch / non instruction fetch bus cycles
- triggers can be combined (trigger dependency)
- all breakpoints can be used for stepping and run-stop a program

5.3.2.5 Sub Parts 5.3.2.5.1 Vector Interrupt Control Module (VIC) Two Stage Vector Interrupt System

Description

The Vector Interrupt System is a two stage interrupt handling structure. The first stage is located inside the interrupt capable digital modules. The second stage collects all module interrupts and provides a single interrupt signal to the CPU. All module interrupts provided to the main interrupt controller are level interrupts.

The Vector Interrupt Control (VIC) logic - included in every module and the main interrupt controller - is build as follows :

The incoming interrupt sources are latched by hold elements if the interrupt source is classified to be an "event". "level" interrupt sources are not latched to hold elements. "event" interrupt sources are usually conditions which are active for a very short time and they need to be latched to be handled. Their latched status flag has to be cleared by the interrupt handling routine. "level" interrupt sources are usually slow signals and their status changes by the interrupt handling itself which removes the interrupt condition.

The unmasked interrupt status can be read via the IRQ_STATUS register. Writing to the IRQ_STATUS register clears all "event" status bits which are written as one. The value of IRQ_MASK bit wise makes the interrupt status. The IRQ_MASK register can be written directly or modified using the IRQ_VENABLE and IRQ_VDISABLE registers. These two registers implement a fast vector based mask modification possibility.

The masked interrupt status is converted to an integer value and compared with the value of the IRQ_VMAX register. It defines a maximum interrupt vector level for the outgoing interrupt.

The IRQ_VNO register implements the possibility to read the current interrupt vector of the highest priority. Low vector numbers have high priority. This value can be used for a fast table based interrupt routine entry. A write access to the IRQ_VNO register clears the interrupt status bit of the written vector.

VIC Logic Structure:

PRELIMINARY INFORMATION - Jan 18, 2017

Figure 5.3.2.5.1-1: VIC logic structure

Two Stage Interrupt System Structure:

Figure 5.3.2.5.1-2: Two stage interrupt system structure

Features

PRELIMINARY INFORMATION - Jan 18, 2017

- IRQ number for fast IRQ processing
- Main IRQ enable to enable or disable all IRQs
- Main IRQ enable MIE for easy cli() and sei() implementation
- IRQ base address for IRQ vector table in memory
- Prioritized IRQ sources where irq 0 has highest priority
- · Fast vector based interrupt enable and disable
- Nested IRQ support

Table 5.3.2.5.1-1: Registers

Register Name	Address	Description
TABLE_BASE	0x00	table base register
TABLE_TYPE	0x02	table type register
MAIN_ENABLE	0x04	IRQ main enable register
IRQ_STATUS0	0x30	IRQ status register 0
IRQ_STATUS1	0x32	IRQ status register 1
IRQ_MASK0	0x34	IRQ mask register 0
IRQ_MASK1	0x36	IRQ mask register 1
IRQ_VENABLE	0x38	IRQ vector enable register
IRQ_VDISABLE	0x3A	IRQ vector disable register
IRQ_VMAX	0x3C	IRQ max vector register
IRQ_VNO	0x3E	IRQ vector number register

Table 5.3.2.5.1-2: Register TABLE_BASE (0x00) table base register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0	base	- base	addre	ess of	vector	table	in mer	nory							

Table 5.3.2.5.1-3: Register TABLE_TYPE (0x02) table type register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : typ numb 0: bas CPU 1: bas comm	be - au er rela se valu interru se valu non int	ito cor ated C ue is c pt poin ue is d errupt	nbine PU inte ombine nter (a irectly servic	vector errupt ed with n inter used a e rout	numb pointe rupt se as CPI ine)	er and r. or num ervice J inter	table ber to routine rupt p	base t be us e per r ointer	to crea ed as module (one	ate veo e)	ctor				

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

Table 5.3.2.5.1-4: Register MAIN	ENABLE (0x04)	IRQ main	enable register
----------------------------------	---------------	----------	-----------------

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : en 1: ena 0: disa	able - abled abled	main i	nterru	pt ena	ble / d	isable									

Table 5.3.2.5.1-5: Register IRQ_STATUS0 (0x30) IRQ status register 0

	MSB															LSB
Content	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15 : g 14 : g 13 : c 12 : c 11 : c 9 : sc 8 : sp 7 : sp 6 : pre 5 : pw 4 : ad 3 : div 2 : wc 1 : sy 0 : me	pio_b pio_a ctimer ctimer ctimer i i_1 i_0 e_pwn vmn c_ctrl vider log s_state em_pro	3 2 1 0 n													

Table 5.3.2.5.1-6: Register IRQ_STATUS1 (0x32) IRQ status register 1

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : gp	io_c														

Table 5.3.2.5.1-7: Register IRQ_MASK0 (0x34) IRQ mask register 0

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : 1: ena 0: disa	: mask abled abled	- ena	ble irq	sourc	e										

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	0 : ma 1: ena 0: disa	ask - e abled abled	nable	irq soı	urce											

Table 5.3.2.5.1-8: Register IRQ_MASK1 (0x36) IRQ mask register 1

Table 5.3.2.5.1-9: Register **IRQ_VENABLE** (0x38) IRQ vector enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	W	W	W	W	W
Bit Description	4:0 : \	no - v	ector I	numbe	er of in	terrup	t to en	able								

Table 5.3.2.5.1-10: Register **IRQ_VDISABLE** (0x3A) IRQ vector disable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	W	W	W	W	W
Bit Description	4:0 : \	/no - v	ector	numbe	er of in	terrup	t to dis	able								

Table 5.3.2.5.1-11: Register IRQ_VMAX (0x3C) IRQ max vector register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W
Bit Description	4:0 : v softwa vector	vmax - are wr r numl	- need ites cu per) ca	ed for Irrent v an nes	nesteo /ector t	d interr numbe	rupt su er to th	ipport nis reg	ister, s	so only	v interr	upts w	vith hig	iher pr	iority (lower

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W
Bit Description	4:0 : v read: when write:	/no - vector no irq vecto	r numb is per r numb	per of ending t ber of i	enable he firs nterru	d peno t unus pt eve	ding in ed irq nt to c	terrup numbe lear	t with I er is re	highes eturned	t prior d.	ity (sm	allest	vector	numb	er).

5.3.2.5.2 Watchdog Module (WDOG)

Features

• 8 bit pre-scaler

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

- pre-scaler is driven by system clock
- 16 bit decrementing timer
- this timer is driven by pre-scaled system clock
- the window-watchdog triggers a system reset when counter value = 0
- when system clock is not running or stops the watchdog will assert a system reset
- the watchdog clock is used to implement this feature
- when watchdog clock oscillator is not running or stops a system reset is asserted
 the system clock is used to implement this feature
- window-watchdog timer is disabled after reset and has to be armed by software
- · window-watchdog generates an interrupt when watchdog is restarted outside specified window
- window-watchdog cannot be disabled or changed when armed
- NOTE: watchdog will be halted during FLASH erase / program
- NOTE: watchdog will be halted during CPU debug halt

Figure 5.3.2.5.2-1: Structure

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

Figure 5.3.2.5.2-2: Timing

Table 5.3.2.5.2-1: Registers

Register Name	Address	Description
CONTROL	0x00	control register
WINDOW	0x02	window configuration register
PRESCALER	0x04	pre-scaler configuration register
RELOAD	0x06	counter reload value register
COUNTER	0x08	current counter value register
IRQ_STATUS	0x30	IRQ status register
IRQ_MASK	0x34	IRQ mask register
IRQ_VENABLE	0x38	IRQ vector enable register
IRQ_VDISABLE	0x3A	IRQ vector disable register
IRQ_VMAX	0x3C	IRQ max vector register
IRQ_VNO	0x3E	IRQ vector number register

Table 5.3.2.5.2-2: Register **CONTROL** (0x00) control register

	MSB															LSB
Content	15:8								-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	W	R/W
Bit Description	15:8 : must will alt 1 : res 0 : no 1 : res 0 : rur 0 - wa 1 - wa 1 - wa	passy be wri ways l start - influe start w n_enal atchdo atchdo	word - tten as be rea nce ratchdo ble - g stop g enat	s 0xA5 d as 0 pg ped pled	x96											

Table 5.3.2.5.2-3: Register WINDOW (0x02) window configuration register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	4	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W
Bit Description	4 : en 0 - no 1 - wii 3:0 : s reset	able - windo ndow size - windo	ow active w is de	efined	as: co	unter	value ·	< (2^w	indow	size)						

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7:0 :p	ore-sca	aler - v	vatchc	log co	unter p	ore-sca	aler (cy	cles =	= pre-s	caler+	-1)				

Table 5.3.2.5.2-4: Register **PRESCALER** (0x04) pre-scaler configuration register

Table 5.3.2.5.2-5: Register **RELOAD** (0x06) counter reload value register

	MSB															LSB
Content	15:0															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	reloa	d - cou	inter re	estart	value										

Table 5.3.2.5.2-6: Register **COUNTER** (0x08) current counter value register

	MSB															LSB
Content	15:0															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0	value	- curr	ent co	unter v	value										

Table 5.3.2.5.2-7: Register IRQ_STATUS (0x30) IRQ status register

	-							-								
	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : ev	t_wind	dow (e	vent) -	watch	ndog re	estart l	before	the "v	vatchd	og res	et wind	dow"			

Table 5.3.2.5.2-8: Register IRQ_MASK (0x34) IRQ mask register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : ma 1: ena 0: disa	ask - e abled abled	enable	irq soı	urce		·	·		·		·				

Table 5.3.2.5.2-9: Register IRQ_VENABLE (0x38) IRQ vector enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	W
Bit Description	0 : vn	o - veo	tor nu	mber	of inter	rupt to	o enab	le								

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	W
Bit Description	0 : vn	o - vec	ctor nu	mber	of inte	rrupt to	o disat	ole								

Table 5.3.2.5.2-10: Register IRQ_VDISABLE (0x3A) IRQ vector disable register

Table 5.3.2.5.2-11: Register IRQ_VMAX (0x3C) IRQ max vector register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : vm softwa vector	nax - n are wr r numt	eeded ites cu per) ca	l for ne irrent v an nest	ested i vector t	nterrup numbe	ot supp er to th	oort nis reg	ister, s	so only	r interr	upts w	vith hig	her pr	iority (lower

Table 5.3.2.5.2-12: Register IRQ_VNO (0x3E) IRQ vector number register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0:vn read: when write:	o - vector no IR vecto	^r numb Q is pe r numb	per of e ending per of i	enable the fir nterru	d peno st unu pt eve	ding in Ised IF nt to c	terrup RQ nur lear	t with I nber is	nighes s retur	t priori ned.	ity (sm	allest	vector	numb	er).

5.3.2.5.3 Extended Multiplier Module (H430_MUL)

The hardware multiplier is a memory mapped peripheral (at a fixed address range from 0x130 to 0x13F). It can be accessed by CPU with full support of common compilers. Though the hardware architecture is different, the unit is fully compatible with the MPY16 multiplier unit in chips of the MSP430 family, providing the same interface, software support, and arithmetic results.

Features

- unsigned/signed multiplication (MPY / MPYS)
- unsigned/signed MAC (multiply and accumulate) operation (MAC / MACS)
- using the old result and adding the new product
- 16*16, 8*16, 16*8, and 8*8 bit input data width
- 32/33 bit output data width
- 1 system clock cycle calculation time
- no CPU wait states (no NOP required)
- extended functionality
 - signed x unsigned and unsigned x signed multiply and multiply-accumulate
 - 8 bit accumulator extension (total 40 bit accumulator)
 - setting of the 40 bit accumulator using a single 16bit word
 - the 16 bit word is either interpreted as signed (two's complement) or as Q1.15 (fractional) value
 - reading of bits 31:16 of the 40 bit accumulator with saturating and rounding
 - the 16 bit word returned is either a signed (two's complement) or a Q1.15 (fractional) value

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

• 40 bit accumulator arithmetic left and right shift by up to 16 bits

The type of operation to be performed is selected by writing the first operand to one of the following four registers. Writing the first operand does not start the operation. The first operand (and thus the type of operation) may remain constant for more than one operation. Writing the second operand starts the operation.

RESLO stores the low word of the result, RESHI stores the high word of the result, and SUMEXT stores information about the result.

For signed operations, results are provided in two's complement format. The sum extension register SUMEXT allows calculations with results exceeding the 32-bit range. This read-only register holds the most significant part of the result (bits 32 and higher). The register simplifies multiple word operations, because straightforward additions can be performed without conditional jumps.

Figure 5.3.2.5.3-1: Multiplier Structure

Table 5.3.2.5.3-1: Registers

Register Name	Address	Description
LAST_MODE	0x00	last mode of multiply/MAC unit
OP2U	0x02	operand 2 unsigned register
OP2S	0x04	operand 2 signed register
OP2SN	0x06	operand 2 signed neg register
ACCU_EXT	0x08	accumulator extension register
RESHI_TC	0x0A	accu 2's complement access register
RESHI_Q1_15	0x0C	accu fractional access register
SHIFT_RIGHT	0x0E	accumulator shift right register
SHIFT_LEFT	0x10	accumulator shift left register
MPY	0x30	multiply unsigned register

PRELIMINARY INFORMATION - Jan 18, 2017

Register Name	Address	Description
MPYS	0x32	multiply signed register
MAC	0x34	mac unsigned register
MACS	0x36	mac signed register
OP2	0x38	operand 2 register
RESLO	0x3A	sum register (low 16 bit)
RESHI	0x3C	sum register (high 16 bit)
SUMEXT	0x3E	sum extension register

Table 5.3.2.5.3-2: Register LAST_MODE (0x00) last mode of multiply/MAC unit

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	1:0 : 0x0 = 0x1 = 0x2 = 0x3 =	ast mo MPY MPYS MAC MACS	ode of S S	multip	ly/MA	C unit:										

Table 5.3.2.5.3-3: Register OP2U (0x02) operand 2 unsigned register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Bit Description	15:0 : The for opera	op2u ormat tion ("	- unsi (signe multip	gned s d/unsi ly" / "m	seconc gned) nultiply	d opera of the accui	and (w first oj nulate	riting s peranc ") is de	starts t l is det etermi	he op termin ned by	eratior ed by / the fi	i) its owr rst ope	n regis erand	ter. Tł registe	າe type er.	e of

Table 5.3.2.5.3-4: Register OP2S (0x04) operand 2 signed register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Bit Description	15:0 : The for opera	op2s ormat tion ("	- sign (signe multip	ed sec d/unsi ly" / "n	ond o gned) nultiply	oerand of the accur	d (writi first op mulate	ng sta peranc e") is de	rts the I is det etermi	opera termin ned by	ation) ed by y the fi	its own rst ope	n regis erand	ster. Th registe	ne type er.	e of

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Bit Description	15:0 : The fo opera	op2si ormat tion ("	n - sig (signe multip	ned se d/unsi ly" / "m	cond gned) nultiply	operar of the / accui	nd, use first op mulate	ed neg peranc ") is de	ated (I is de etermi	- op2s termin ned by	sn) (w ed by / the fi	riting s its owr rst ope	starts t n regis erand	he ope ter. Th registe	eration etype r.	i) e of

Table 5.3.2.5.3-5: Register OP2SN (0x06) operand 2 signed neg register

Table 5.3.2.5.3-6: Register **ACCU_EXT** (0x08) accumulator extension register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W							
Bit Description	7:0 : a	accu_e	ext - a	ccumu	lator e	xtensi	on to 4	40 bits								

Table 5.3.2.5.3-7: Register RESHI_TC (0x0A) accu 2's complement access register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : RESH writing ACCU RESH RESL readir tmp[3 // bias if tmp] tmp[3 // inclu if all b RESH else if RESH else // RESH	reshi_ Il inter J_EXT J_EXT I = RE $O = 0O = $	_tc - 4(pretect sign e = RE ESHI_ x0000 inded (ACCI unding = tmp[signed = tmp[9] = 0 = 0x7f rflow = 0x80	0 bit ac l as sig extens SHI_T TC and th U_EXT 39:16] satura ame in [31:16] // ove =FF	ccumu gned ii ion) is C[15] en sat r, RES + 1 ation v tmp[3 rflow	Ilator r hteger implei ? 0xFI curatec SHI, RI vhen c 39:31]	ead ar (two's mente = : 0x0) is im ESLO) verflov	nd writ comp d as fo 0 ppleme ; w	ented a	ess it) as follo	ows:					

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :: RESH writing ACCU RESH RESH RESH RESL RESL readir tmp[3 // inclu // biass Note: lator.	reshi Il inter g (shif J_EXT II[15] II[14:0 .0[15] .0[14: ng (shi 9:0] = uding s sed rou A MP There	_q1_1. pretect t right = RES = RES] = RES 0] = 0 ift left H (ACC) signed unding YS or fore up	5 - 40 I as Q By one SHI_C HI_Q1 SHI_Q SHI_Q SHI_Q U_EX ⁻ I satur and s MACS Son wr	bit acc 1.15 (f and s 1_15[_15[1 21_15[1_15[1 1_15[0 r, roun F, RES ation v aturat s opera iting a	cumula raction sign ex 15] ? 5] [15:1])] ding a SHI, R vhen c shift r shift r	ator rea nal) ktensic 0xFF : 0xFF : 0xFF : 0xFF : 0xerflo me as f two (right by	ad and on) is in 0x00 uration << 1 w above Q1.15 (one a	l write mplem n) is in values and up	acces nented npleme s will re	s as fol ented a esult ir	lows: as follo n a Q2 a shift	ows: .30 va left by	lue in one is	the ac	cumu- red.

Table 5.3.2.5.3-8: Register RESHI_Q1_15 (0x0C) accu fractional access register

Table 5.3.2.5.3-9: Register SHIFT_RIGHT (0x0E) accumulator shift right register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	W	W	W	W
Bit Description	3:0 : s 0 : sh 15 : s The s	shift - a ift by 1 hift by hift sta	arithm 1 16 arts im	etic sh media	ift righ tely af	t of 40 ter wri	bit ac	cumul	ator (<i>F</i>	ACCU_	EXT,	RESH	li, RES	SLO)		

Table 5.3.2.5.3-10: Register SHIFT_LEFT (0x10) accumulator shift left register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	W	W	W	W
Bit Description	3:0 : s 0 : sh 15 : s The s	shift - a ift by 1 hift by hift sta	arithm 16 arts im	etic sh media	ift left tely af	of 40 k ter wri	bit acc	umula is regi	tor (A0	CCU_E	EXT, F	RESHI	, RESI	_O)		

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	op1 -	unsig	ned m	ultiply											

Table 5.3.2.5.3-11: Register MPY (0x30) multiply unsigned register

Table 5.3.2.5.3-12: Register MPYS (0x32) multiply signed register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	op1 -	signe	d multi	iply											

Table 5.3.2.5.3-13: Register **MAC** (0x34) mac unsigned register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	op1 -	unsig	ned m	ultiply	accum	nulate									

Table 5.3.2.5.3-14: Register MACS (0x36) mac signed register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	op1 -	signe	d multi	ply ac	cumul	ate									

Table 5.3.2.5.3-15: Register OP2 (0x38) operand 2 register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : Note:	op2 - regist	write er valu	access ie sign	s starts	s multi Is prev	plicatio viously	on set op	o1 sigr	٦.						

Table 5.3.2.5.3-16: Register RESLO (0x3A) sum register (low 16 bit)

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0	res_lo	o - bits	150	of the	result	/ accu	imulat	or							

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 In cas MPY: MPYS Two's MAC: MACS Note:	: res_h se of o upper 5: The comp upper 5: Upp When	ii - bits peratio 16 bit MSB lemen 16 bit per 16-	3110 on: of res is the s it notal t of res bits of g, AC0	6 of th sult sign of tion is sult the re CU_E>	e resu f the re used f esult. T XT will	It / acc esult. ∃ for the wo's c be se	cumula The rei result comple t to 0.	ator mainin ement	ng bits notatic	are the	e uppe sed fo	er 15-b r the re	its of t əsult.	he res	ult.

Table 5.3.2.5.3-17: Register RESHI (0x3C) sum register (high 16 bit)

Table 5.3.2.5.3-18: Register SUMEXT (0x3E) sum extension register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 : MPY: 0x000 0xFFI MAC: 0x000 0x000 MACS 0x000 0xFFI	sum_ alway cont of if re F if re conta 00 no c 1 resu cont conta 00 if re F if re	ext - In s 0x00 ains the sult was esult was ins the carry re ult with tains the sult was esult was	n case 000 ne exte as pos as neg carry esult carry ne exte as pos as neg	of op ended itive gative of the ended itive gative	eratior sign c result sign c	n: If the r It	esult esult								

5.3.2.5.4 Divider Module (DIVIDER) Features

- unsigned and signed integer divide arithmetic
- 32bit / 16bit
- 32 bit result
- 16 bit remainder
- 16 system clock cycles calculation time
 - if a result or remainder register is accessed before calculation has finished the read access is halted until the calculation has finished and the value is valid

	-	
Register Name	Address	Description
OP1LO	0x00	operand 1 (low 16 bit)
OP1HI	0x02	operand 1 (high 16 bit)
OP2	0x04	unsigned operand 2 register
OP2S	0x06	signed operand 2 register

Table 5.3.2.5.4-1: Registers

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

Register Name	Address	Description
RESULTLO	0x08	result register (low 16 bit)
RESULTHI	0x0A	result register (high 16 bit)
REMAINDER	0x0C	remainder register
IRQ_STATUS	0x30	IRQ status register
IRQ_MASK	0x34	IRQ mask register
IRQ_VENABLE	0x38	IRQ vector enable register
IRQ_VDISABLE	0x3A	IRQ vector disable register
IRQ_VMAX	0x3C	IRQ max vector register
IRQ_VNO	0x3E	IRQ vector number register

Table 5.3.2.5.4-2: Register **OP1LO** (0x00) operand 1 (low 16 bit)

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	op1 -	opera	nd 1 (lower	16 bit)								1		

Table 5.3.2.5.4-3: Register **OP1HI** (0x02) operand 1 (high 16 bit)

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0	op1 -	opera	nd 1 (l	higher	16 bit)									

Table 5.3.2.5.4-4: Register **OP2** (0x04) unsigned operand 2 register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	op2 -	write	access	starts	s unsig	ned o	peratio	on							

Table 5.3.2.5.4-5: Register OP2S (0x06) signed operand 2 register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	op2 -	write	access	starts	s signe	d ope	ration								

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 :	result	: - equ	als "op	1 div	op2" (l	ower p	oart)								

Table 5.3.2.5.4-6: Register **RESULTLO** (0x08) result register (low 16 bit)

Table 5.3.2.5.4-7: Register RESULTHI (0x0A) result register (high 16 bit)

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0	result	t - equ	als "op	o1 div	op2" (ł	nigher	part)								

Table 5.3.2.5.4-8: Register **REMAINDER** (0x0C) remainder register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 :	rema	inder -	equal	s "op1	mod	op2"									

Table 5.3.2.5.4-9: Register IRQ_STATUS (0x30) IRQ status register

	-							-								
	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : ev	t div	by zei	ro (eve	ent) - c	divide l	by zer	o even	it							

Table 5.3.2.5.4-10: Register IRQ_MASK (0x34) IRQ mask register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : ma 1: ena 0: disa	ask - e abled abled	nable	irq soı	urce											

Table 5.3.2.5.4-11: Register **IRQ_VENABLE** (0x38) IRQ vector enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : vn	o - veo	tor nu	mber	of inte	rrupt te	o enab	le								

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : vn	o - veo	ctor nu	mber	of inte	rrupt to	o disat	ble		•						

Table 5.3.2.5.4-12: Register IRQ_VDISABLE (0x3A) IRQ vector disable register

Table 5.3.2.5.4-13: Register IRQ_VMAX (0x3C) IRQ max vector register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : vm softwa vector	nax - n are wr r numl	ieeded ites cu per) ca	l for ne irrent v an nes	ested i /ector t	nterrup numbe	ot supp er to th	oort nis reg	ster, s	so only	r interr	upts w	vith hig	iher pr	iority (lower

Table 5.3.2.5.4-14: Register IRQ_VNO (0x3E) IRQ vector number register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0:vn read: when write:	o - vector no IR vecto	r numb Q is pe r numb	per of e ending per of i	enable the fir interru	d peno st unu pt eve	ding in Ised IF nt to c	terrup {Q nur lear	t with I nber is	highes s retur	t prior ned.	ity (sm	allest	vector	numb	er).

5.3.2.5.5 Memory Protection Module (MEM_PROT)

This module configures the accessability of the memory space.

It implements an opcode execution protection, a System ROM read protection and a stack area type configuration.

Features

- opcode execute area configuration
- granularity: 1KByte
- System ROM read configuration
- granularity: 1KByte
- stack area configuration
 - granularity: 256Byte

Table 5.3.2.5.5-1: Registers

Register Name	Address	Description
EXEC_ENABLE_0	0x00	execute enable register 0
EXEC_ENABLE_1	0x02	execute enable register 1
EXEC_ENABLE_2	0x04	execute enable register 2
EXEC_ENABLE_3	0x06	execute enable register 3
STACK_ENABLE	0x08	stack enable register

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

Register Name	Address	Description
SRAM_WR_ENAB LE	0x0A	sram write enable register
ACCESS_ADDR	0x10	access address register
ACCESS_PC	0x12	access PC register
ACCESS_TYPE	0x14	access type register
ACCES_CLEAR	0x16	access clear register
SYSROM_RD_EN ABLE	0x20	System ROM read enable register
IRQ_STATUS	0x30	IRQ status register
IRQ_MASK	0x34	IRQ mask register
IRQ_VENABLE	0x38	IRQ vector enable register
IRQ_VDISABLE	0x3A	IRQ vector disable register
IRQ_VMAX	0x3C	IRQ max vector register
IRQ_VNO	0x3E	IRQ vector number register

Table 5.3.2.5.5-2: Register **EXEC_ENABLE_0** (0x00) execute enable register 0

	MSB															LSB
Content	15:0															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : Note: 0 - ex 1 - ex bit 15 bit 1 : bit 0 : Note: interru	enabl this co ecutio ecutio : area area (area (Acces upt or	le - are onfigui n of op n of op 0x0400 0x0400 0x0000 ss viola reset	ea size ration pcode pcode D0 to 0 D to 0x D to 0x ation is	e: 1 KE applie: deniec allowe 0x3FFE 03FE 03FE s hand	Byte s to Cl d d E led by	PU ins	tructio	n bus E moc	acces lule ar	s nd can	be co	nfigure	ed to le	ead to	an

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	enabl	e - are	ea size	: 1 KE	Byte										
	Note: 0 - ex 1 - ex bit 15 bit 1 : bit 0 : Note: interro	this co ecutio ecutio : area area (area (area (Acces upt or	n of op n of op 0x700 0x4400 0x4000 ss viola reset	ration a pcode pcode D0 to 0 D to 0x D to 0x ation is	applies denied allowe x7FFE 47FE 43FE s hand	s to Cl d ed ≣ led by	PU ins	tructio	n bus E moc	acces lule ar	s id can	be co	nfigure	ed to le	ead to	an

Table 5.3.2.5.5-3: Register EXEC_ENABLE_1 (0x02) execute enable register 1

Table 5.3.2.5.5-4: Register **EXEC_ENABLE_2** (0x04) execute enable register 2

	MSB															LSB
Content	15:0															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : Note: 0 - ex 1 - ex bit 15 bit 1 : bit 0 : Note: interru	enabl this co ecutio ecutio : area area area (Acces upt or	le - are onfigur n of op n of op 0x8400 0x8400 0x8400 0x8000 ss viola reset	ea size ration pcode pcode 00 to 0 0 to 0x 0 to 0x ation is	e: 1 KE applie: denied allowe 0xBFF 87FE 83FE 83FE 83FE 8 hand	3yte s to Cl d ed E led by	PU ins	tructio	n bus E moc	acces lule ar	s nd can	be co	nfigure	ed to le	ead to	an

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	enabl	e - are	ea size	e: 1 KE	syte										
	Note: 0 - ex 1 - ex	this co ecutio ecutio	onfigui n of op n of op	ration bcode bcode	applie: deniec allowe	s to CI d d	⊃U ins	tructio	n bus	acces	S					
	bit 15	: area	0xF0	00 to ()xFFFI	E										
	 bit 1 : bit 0 :	area (area (0xC40 0xC00	0 to 0) 0 to 0)	<c7fe< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c7fe<>											
	Note: interru	Acces upt or	ss viola reset	ation is	s hand	led by	SYS_	STAT	E moc	lule an	id can	be co	nfigure	ed to le	ead to	an

Table 5.3.2.5.5-5: Register EXEC_ENABLE_3 (0x06) execute enable register 3

Table 5.3.2.5.5-6: Register STACK_ENABLE (0x08) stack enable register

	MSB															LSB
Content	15:0															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : Note: 0 - sta 1 - sta bit 15 bit 1 : bit 0 : Note: interru	this co ack no ack allo : area area Acces upt or	le - are onfigui t allow owed 0x1Fi 0x1100 0x1000 ss viola reset	ea size ration red 00 to 0 0 to 0x 0 to 0x ation is	256 applie 0x1FFI 11FE 10FE s hand	Byte s to Cl E led by	PU da SYS_	sta bus	stack E moc	acces lule ar	s nd can	be co	nfigure	ed to le	ead to	an

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : 0 - are 1 - are bit 15 bit 1 : bit 0 : Note: interru	enab ea writ ea writ : area area area Acces upt or	le - are te den te allov 0x1F 0x1100 0x100 0x100 reset	ea size ied wed 00 to 0 0 to 0x 0 to 0x ation is	256 0x1FFI 11FE 10FE s hand	Byte Ξ led by	SYS_	STAT	E moc	lule ar	ld can	be co	nfigure	ed to le	ead to	an

Table 5.3.2.5.5-7: Register SRAM_WR_ENABLE (0x0A) sram write enable register

Table 5.3.2.5.5-8: Register ACCESS_ADDR (0x10) access address register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	Description 15:0 : addr - address of the FIRST detected bad access event															

Table 5.3.2.5.5-9: Register **ACCESS_PC** (0x12) access PC register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 : pc - CPU PC value of the FIRST detected bad access event															

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	6:4			-	2:0		
Reset value	0	0	0	0	0	0	0	0	0	1	1	1	0	1	1	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	6:4 : k 0 : CF 1 : CF 2 : mc 3 : SC Note: 2:0 : t 0-1 : e See II 2 : Ex 3 : Sta 4 : SF 5 : Sy Note:	bus - b PU ins PU dat Dotor pe DI DM/ value ype - f equals RQ_S ecute ack Pr AM W stem f value	bus of t truction a bus pripher A bus 7 mea type of intern TATUS Protector Vrite P ROM F 7 mea	the FIF n bus als DM ans no f the F upt ver S flag ttion rotecti Read F ans no	AST de MA bus bad a IRST d ctor nu bits for bits for on Protect bad a	etecte s ccess detect umber r detai tion ccess	event ed bad of rela ls. event	has ou l acces ited ev has ou	s even ccurec ss eve vent	t I. nt						

Table 5.3.2.5.5-10: Register ACCESS_TYPE (0x14) access type register

Table 5.3.2.5.5-11: Register ACCES_CLEAR (0x16) access clear register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	W
Bit Description	0 : clear - write to this register clears the ACCESS_* registers and reenables them to capture the next bad access event															

Table 5.3.2.5.5-12: Register SYSROM_RD_ENABLE (0x20) System ROM read enable register

	MSB															LSB
Content	15:0															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : Note: Note: 0 - ard 1 - ard bit 15 bit 1 : bit 0 :	: enabl this co bits co ea rea ea rea : area area (area (le - are onfigui an onl: d deni d allov 0x7C 0x4400	ea size ration r y be se ed wed 00 to 0 0 to 0 0 to 0 0 to 0 0 to 0	e: 1K E applies et to 0 0x7FF 447FE 43FE	Byte s to Cl onc E	PU da	ta bus bit ca	, moto n not t	r contr be cha	ol and	SCIE	DMA b	us acc	:ess	

PRELIMINARY INFORMATION – Jan 18, 2017

Table 5.3.2.5.5-13: Register IRQ_STATUS (0x30) IRQ status register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	 1 : evt_dmisaligned - misaligned 16 bit data access event 0 : evt_undefined - undefined opcode event 															

Table 5.3.2.5.5-14: Register IRQ_MASK (0x34) IRQ mask register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	1:0 : mask - enable irq source 1: enabled 0: disabled															

Table 5.3.2.5.5-15: Register IRQ_VENABLE (0x38) IRQ vector enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : vno - vector number of interrupt to enable															

Table 5.3.2.5.5-16: Register IRQ_VDISABLE (0x3A) IRQ vector disable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : vno - vector number of interrupt to disable															

Table 5.3.2.5.5-17: Register IRQ_VMAX (0x3C) IRQ max vector register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	1:0 : vmax - needed for nested interrupt support software writes current vector number to this register, so only interrupts with higher priority (lower vector number) can nest															

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	1:0 : vread: when write:	/no - vector no irq vecto	r numt is per r numt	per of ending t	enable he firs interru	d peno t unus pt eve	ding in ed irq nt to c	terrup numb lear	t with I er is re	nighes eturned	t prior 1.	ity (sm	allest	vector	numb	er).

Table 5.3.2.5.5-18: Register IRQ_VNO (0x3E) IRQ vector number register

5.3.2.5.6 System State Module (SYS_STATE) Features

- system clock frequency selection
- module clock enable (disabled modules save power)
- Note: module has to be enabled before used by software
- reset source status
- reset enable
- analog part calibration registers
- IC version
- Customer ID
- target die clock generator
- f_target = f_system_clk / (target_clk_h + target_clk_l + 2)

Note: Note: Once set, RESET_ENABLE and CALIBRATION_LOCK bits cannot be cleared again.

Note: CALIBRATION, IC_VERSION_X, CUSTOMER_ID and DEVICE_ID will be locked by CALIBRATION_LOCK. These registers will be initialized and locked by INFO BOOT program after power up and are therefore not change-able by customer software.

Register Name	Address	Description
MODULE_ENABLE	0x00	module enable register
CONTROL	0x02	system control register
RESET_STATUS	0x04	reset status register
RESET_STATUS_ CLEAR	0x06	reset status clear register
RESET_ENABLE	0x08	reset enable register
SW_RESET	0x0A	sw reset register
CALIBRATION_LO CK	0x0C	calibration lock register
CALIBRATION	0x0E	calibration data register
IC_VERSION_0	0x10	IC version register 0
IC_VERSION_1	0x12	IC version register 1
IC_VERSION_2	0x14	IC version register 2
IC_VERSION_3	0x16	IC version register 3
CUSTOMER_ID	0x18	CUSTUMER ID register
DEVICE_ID	0x1A	Device ID register
SIGNATURE_0	0x20	Signature Register
SIGNATURE_1	0x22	Signature Register

Table 5.3.2.5.6-1: Registers

PRELIMINARY INFORMATION - Jan 18, 2017

Register Name	Address	Description
SIGNATURE_2	0x24	Signature Register
SIGNATURE_3	0x26	Signature Register
SYS_CLK_CON- FIG	0x28	System Clock Config Register
IRQ_STATUS	0x30	IRQ status register
IRQ_MASK	0x34	IRQ mask register
IRQ_VENABLE	0x38	IRQ vector enable register
IRQ_VDISABLE	0x3A	IRQ vector disable register
IRQ_VMAX	0x3C	IRQ max vector register
IRQ_VNO	0x3E	IRQ vector number register

Table 5.3.2.5.6-2: Register MODULE_ENABLE (0x00) module enable register

	MSB															LSB
Content	-	-	13	12	11	10	9	8	7	6	5	4	3	2	1	-
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R
Bit Description	13 : p 12 : p 11 : s 10 : c 9 : cci 8 : cci 6 : gp 5 : gp 4 : gp 3 : sp 2 : sp 1 : sci	wmn - re_pw aradc_ ctimer_ timer_ timer_ io_c - io_a - io_a - s_ i_0 - S i SCI	PWM m - Pr _ctrl - { _3 - C 2 - CC 1 - CC 0 - CC GPIO GPIO GPIO GPIO SPI 1 n SPI 0 n	N moo e PWI SAR A CTIME TIMEI TIMEI C moo B moo A moo nodule nodule	dule er dule er DC cc ER 3 n R 2 mo R 1 mo R 1 mo R 1 mo dule er dule er dule er dule en abl enabl	hable lule er Introl r nodule odule e odule e nable nable nable e e	able nodule enable enable enable	enab le	le		·			·		

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:1						9:7			6:4			3	2:0		
Reset value	0	0	0	0	0	0	0	1	1	0	1	1	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:10 This V clock one a 9:7 :1 0:1 c 1:2 c 2:3 c 3:4 c 7:8 c 6:4 :1 0:1 c 1:2 c 2:3 c 3:4 c 7:8 c 7:7 7:7 7:7 7:7 7:7 7:7 7:7 7:7 7:7 7:) : sys_ /alue i freque djust l arget_ ycles y ycles ycles ycles ycles ycles ycles ycles ycles ycles ycles ycles y	_clk_a s alwa ency. _SB ch _clk_h _clk_l -	djust - ys sub nanges - targe - targe pad dr	syster stracte t die c t die c ive str m cloc	n cloc d from ystem clock h	k RC of the in clock igh pe w peri select	by apperiod cyc	or trin trim v prox ycles s	n value alue a 0.25% selection	offsei nd only of its on (base	t y allow non-ad se clock	djusted ck: 24	ower th d value MHz) Hz)	ne syst	em

Table 5.3.2.5.6-3: Register CONTROL (0x02) system control register

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	13 : e 12 : s 11 : s 10 : fl 9 : fla 8 : sra 7 : cp 6 : sw 5 : wa 4 : sy 3 : nrs 2 : vd 1 : vd 0 : po	xec_p tack_r ram_w ash_1 sh_2b am_pa u_pari r_rese ttchdo s_clk_ sti - NF dc_ok dio_ok r - pov	rot - E prot - S yr_prot bit_err it_err - rity - S ty - CF t - soft g - wa fail - w RSTI p - vddo c - vdd ver on	xecutio Stack p - Writ - FLAS FLAS BRAM PU reg ware r tchdog vatchd ad res o_ok re io_ok reset	on pro protect SH sin SH dou parity ister p eset fl preset flag eset flag	tectior ion resets to ngle bi ible bit reset f ag flag flag lag lag	n reset set flag protec t error t error flag eset fla	flag ted sra reset reset f ag atch re	am res flag flag eset fla	set flag ag)					

Table 5.3.2.5.6-4: Register RESET_STATUS (0x04) reset status register

Table 5.3.2.5.6-5: Register RESET_STATUS_CLEAR (0x06) reset status clear register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	W
Bit Description	0 : cle	ar - w	riting o	lears	RESE	T_STA	TUS	registe	er							

Table 5.3.2.5.6-6: Register RESET_ENABLE (0x08) reset enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R
Bit Description	8 : ex 7 : sta 6 : sra 5 : fla 4 : fla 3 : sra 2 : cp 1 : so 0 : wa	ec_pro ack_pr am_wr sh_1b sh_2b am_pa u_pari ftware utchdo	ot - Ex ot - St _prot it_err it_err it_err urity - S ty - CF - softv g - wa	ecution ack pro- - Write - FLAS - FLAS SRAM PU reg ware re tchdog	n prote otectic acces H sing H dou parity ister p eset en g reset	ection on rese ss to p gle bit ible bit reset parity r nable enabl	reset e et enat rotecte error r t error enable eset e e	enable ole ed srat reset e reset nable	m rese nable enable	et enat	ble					

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	W	R
Bit Description	1 : sw Note: 0 : po	rese RESE r_flag	t - ass ET_EN - sepa	ert a s ABLE. trate p	ystem .softwa ower-o	reset are ha on-res	which s to be et flag	also c set to for bo	lears S 1 bef otload	SW_R ore er usa	ESET.	por_fl	ag			

Table 5.3.2.5.6-7: Register SW_RESET (0x0A) sw reset register

Table 5.3.2.5.6-8: Register CALIBRATION_LOCK (0x0C) calibration lock register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Bit Description	0 : loc Note:	k - loc once	ck calik set, ca	oration alibratio	value on dat	s (cal a canr	values lot be	are c unlock	hange ed ag	d to re ain	ad on	ly whe	n lock	_cal w	as set)

Table 5.3.2.5.6-9: Register **CALIBRATION** (0x0E) calibration data register

	MSB															LSB
Content	15:8								7:4				-	2:0		
Reset value	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : 7:4 : 0 2:0 : 0	cal_s cal_bg cal_vre	ys_os ap- ba ef - ref	c - sys Indgap erence	tem os selec e volta	scillato tion (ti ge trim	or frequ rim) va n value	uency alue e	trim va	alue	1					

Table 5.3.2.5.6-10: Register IC_VERSION_0 (0x10) IC version register 0

	MSB															LSB
Content	15:8								7:0							
Reset value	0	0	1	1	0	1	0	1	0	1	0	0	1	1	0	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 :	high_	byte -	high_l	byte IC) desig	gn ver	sion 0								
	7:0 : I	ow_by	/te - m	anufad	cturing	type	(M, P,	E,)								

Table 5.3.2.5.6-11: Register IC_VERSION_1 (0x12) IC version register 1

	MSB															LSB
Content	15:8								7:0							
Reset value	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : 7:0 :	high_ ow_by	byte - /te - lo	high_l w_byte	byte IC e IC de	desiç Əsign v	on vers /ersior	sion 1 1 1								

PRELIMINARY INFORMATION – Jan 18, 2017

	MSB															LSB
Content	15:8								7:0							
Reset value	0	0	1	1	1	0	0	1	0	0	1	1	1	0	0	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8: 7:0:	high_ ow_by	byte - /te - lo	high_l w_byte	byte IC e IC de	desig design v	gn vers versior	sion 2 1 2								

Table 5.3.2.5.6-12: Register IC_VERSION_2 (0x14) IC version register 2

Table 5.3.2.5.6-13: Register IC_VERSION_3 (0x16) IC version register 3

	MSB															LSB
Content	15:8								7:0							
Reset value	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : 7:0 :	high_ ow by	byte - /te - IC	should desig	d be w In vers	ritten (sion (A	0 ., B,)		•			•	•	•	

Table 5.3.2.5.6-14: Register CUSTOMER_ID (0x18) CUSTUMER ID register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7:0 : i FLAS usable Note: Note:	d - cus H e value value value	stome es: 2 . s 0 un 255 (d	r identi . 255 d 1 mu default	ficatio Ist not) is the	n num be us e ELM	ber us ed ! OS ID	sed by value	hardw and h	vare to as not	allow to be	JTAG used f	acces	er cus	PU an	d !

Table 5.3.2.5.6-15: Register DEVICE_ID (0x1A) Device ID register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : i comb Note:	d - du inatior will be	al die o n of mi e admi	device cro co nistrat	identi ntrolle ed by	fication r and a ELMO	n num analog S dev	ber wh die to ice da	nich ca allow tabase	in be r individ e	ead vi dual de	a JTA evice h	G to id nandlir	entify 1g	the cu	rrent

Table 5.3.2.5.6-16: Register SIGNATURE_0 (0x20) Signature Register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 : may b receiv tent a	val - (be use red via ccess	custon d by s ι LIN a)	ner spo oftwar Ind col	ecific s e as va mpare	signatu alid ke d by s	ire val y valu oftwar	ue (bit e to al e with	s 15:0 low FL this 64) _ASH i 4 bit si	read vi gnatur	ia LIN e valu	(eg. a e to al	n acce Iow Fl	ess key _ASH (/ is con-

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 : may b receiv tent a	val - be use ved via ccess	custor ed by s a LIN a)	ner sp softwar and co	ecific s e as v mpare	signatu alid ke ed by s	ire val y valu oftwar	ue (bit e to al e with	s 31:1 low FL this 64	6) _ASH 4 bit si	read v gnatur	ia LIN e valu	(eg. a le to al	n acce llow Fl	ess key _ASH (/ is con-

Table 5.3.2.5.6-17: Register **SIGNATURE_1** (0x22) Signature Register

Table 5.3.2.5.6-18: Register SIGNATURE_2 (0x24) Signature Register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 : may b receiv tent a	val - (be use red via ccess)	custon d by s i LIN a)	ner spe oftwar Ind coi	ecific s e as va npare	signatu alid ke d by s	ire vali y valu oftware	ue (bit e to al e with	s 47:3 low FL this 64	2) _ASH r 1 bit si	read vi gnatur	a LIN e valu	(eg. a e to al	n acce Iow FL	ss key ASH (/ is con-

Table 5.3.2.5.6-19: Register SIGNATURE_3 (0x26) Signature Register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 : may t receiv tent a	val - (be use ved via ccess)	custon d by s ι LIN a)	ner spe oftwar Ind coi	ecific s e as va npare	signatu alid ke d by s	ire val y valu oftwar	ue (bit e to al e with	s 63:4 low FL this 64	8) _ASH i 4 bit si	read vi gnatur	a LIN e valu	(eg. a e to al	n acce Iow Fl	ess key _ASH (/ is con-

Table 5.3.2.5.6-20: Register SYS_CLK_CONFIG (0x28) System Clock Config Register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	5	4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	5 : ad (sys_0 0 : us 1 : us 4:0 : s 0 21	c_clk_ clk_os e FSM e shift sys_cll 1 analo	phase c) to g l gene ed FS k_dela og dela	e - sele lenerat rated s M sign ly - AD ays (se	ects an te ADC signal al to b C cloc ee ana	ADC C clock as AD e sam ck to s log pa	clock c signa C cloc pled ystem ramet	phase al k (non clock ers for	signal shift delay detail	l to be variant s)	samp)	led by	non d	elayec	l sys_c	clk

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	8 : ex 7 : sta 6 : sra 5 : fla: 4 : fla: 3 : sra 2 : cp 1 : so 0 : wa	ec_pro ack_pr am_wr sh_1b sh_2b am_pa am_pa u_pari ftware itchdog	ot - Exe ot - Sta _prot - it_err - it_err - rity - S ty - CF - softw g - Wa	ecutior ack pro Vrite Flash Flash RAM O par vare re itchdog	n prote otectio acces one b two b parity ity erro eset ev g even	ection on even ss to p bit erro it error error or vent t	event nt rotecte r corre r detec	ed srar ected cted	n evei	nt						

Table 5.3.2.5.6-21: Register IRQ_STATUS (0x30) IRQ status register

Table 5.3.2.5.6-22: Register IRQ_MASK (0x34) IRQ mask register

	MSB															LSB
Content	-	-	-	-	-	-	-	8:0								
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R/W								
Bit Description	8:0 : r 1: ena 0: disa	nask - abled abled	- enabl	le irq s	ource											

Table 5.3.2.5.6-23: Register IRQ_VENABLE (0x38) IRQ vector enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	2:0		
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	W	W	W
Bit Description	2:0 : V	/no - v	/ector	numbe	er of in	iterrup	t to en	able								

Table 5.3.2.5.6-24: Register **IRQ_VDISABLE** (0x3A) IRQ vector disable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	2:0		
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	W	W	W
Bit Description	2:0 : v	no - v	ector	numbe	er of in	terrupt	to dis	able								

Table 5.3.2.5.6-25: Register IRQ_VMAX (0x3C) IRQ max vector register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : vmax - needed for nested interrupt support software writes current vector number to this register, so only interrupts with higher priority (lower vector number) can nest															

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : vno - read: vector number of enabled pending interrupt with highest priority (smallest vector number). when no irq is pending the first unused irq number is returned. write: vector number of interrupt event to clear															

Table 5.3.2.5.6-26: Register IRQ VI	NO (0x3E) IRQ vector number register

5.3.2.5.7 IO MUX Control Module (IOMUX_CTRL)

5.3.2.5.7.1 Description

This module can be used to configure the digital module IO signal to device pin assignment.

5.3.2.5.7.2 Operating environment

Figure 5.3.2.5.7.2-1: operating environment

5.3.2.5.7.3 Features

- the device implements 3 IO groups: PA, PB, PC
- each IO group includes 8 pins, e.g. PA group includes PA0 ... PA7
- a number of module IO signals can be connected to the pins
 - for each PC group pin, one of 16 possible module IO signals can be selected
 - for each PA or PB group pin, one of 4 possible module IO signals can be selected
 - the following tables define the possible module IO signal selections
 - please see the related module descriptions for module signal explanation
- the lock registers can be used to lock a previously set IO configuration to prevent it from changing by software write accesses

PRELIMINARY INFORMATION - Jan 18, 2017

• to configure a pin to be used as analog input (ADC input signal), please select the GPIO signal for this pin and make sure, that the output enable bit of the GPIO signal is not set in the related GPIO module register

5.3.2.5.7.4 PA IO group pins signal selection table

- for each PA pin, one of 4 signals can be selected from the tables below
- each PA pin has it's own 4 to 1 IO signal multiplexer which can be configured using a 2 bit select value
- for every PA pin a different select value can be configured

pin name	module name	signal name	signal direction
PA 0	GPIO_A	IO0	in / out
PA 1	GPIO_A	IO1	in / out
PA 2	GPIO_A	IO2	in / out
PA 3	GPIO_A	IO3	in / out
PA 4	GPIO_A	IO4	in / out
PA 5	GPIO_A	IO5	in / out
PA 6	GPIO_A	IO6	in / out
PA 7	GPIO_A	107	in / out

Table 5.3.2.5.7.4-1: PA signal select table (select = 0)

Table 5.3.2.5.7.4-2: PA signal select table (select = 1)

pin name	module name	signal name	signal direction
PA 0	SPI_0	SCK	in / out
PA 1	SPI_0	SDI	in
PA 2	SPI_0	SDO	out
PA 3	SPI_0	NSS	in / out
PA 4	SYS_STATE	TARGET_CLK	out
PA 5	PWMN	LS_U	out
PA 6	PWMN	LS_V	out
PA 7	PWMN	LS_W	out

Table 5.3.2.5.7.4-3: PA signal select table (select = 2)

pin name	module name	signal name	signal direction
PA 0	PWMN	NALLOFF	in
PA 1	CCTIMER_0	MEAS	in
PA 2	SARADC_CTRL	MUX_1	out
PA 3	SARADC_CTRL	MUX_2	out
PA 4	PWMN	LS_U	out
PA 5	PWMN	LS_V	out
PA 6	PWMN	LS_W	out
PA 7	CCTIMER_1§§	MEAS	in

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.
E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

pin name	module name	signal name	signal direction
PA 0	SCI	RXD	in
PA 1	SCI	TXD	out
PA 2	PWMN	LS_X	out
PA 3	SYS_STATE	TARGET_CLK	out
PA 4	PWMN	HS_X	out
PA 5	CCTIMER_0	PWM	out
PA 6	CCTIMER_1	PWM	out
PA 7	SARADC_CTRL	MUX_1	out

Table 5.3.2.5.7.4-4: PA signal select table (select = 3)

5.3.2.5.7.5 PB IO group pins signal selection table

• for each PB pin, one of 4 signals can be selected from the tables below

- each PB pin has it's own 4 to 1 IO signal multiplexer which can be configured using a 2 bit select value
- for every PB pin a different select value can be configured

Table 5 3 2 5 7 5-1. DB	cianal coloct table	(coloct - 0)
Table 5.5.2.5.7.5-1. FD	Signal Select lable	(Select = 0)

pin name	module name	signal name	signal direction
PB 0	GPIO_B	IO0	in / out
PB 1	GPIO_B	IO1	in / out
PB 2	GPIO_B	IO2	in / out
PB 3	GPIO_B	IO3	in / out
PB 4	GPIO_B	IO4	in / out
PB 5	GPIO_B	IO5	in / out
PB 6	GPIO_B	IO6	in / out
PB 7	GPIO_B	107	in / out

Table 5.3.2.5.7.5-2: PB signal select table (select	= 1)
---	------

pin name	module name	signal name	signal direction			
PB 0	SCI	RXD	in			
PB 1	SCI	TXD				
PB 2	PWMN	HS_U	out			
PB 3	PWMN	HS_V	out			
PB 4	PWMN	HS_W	out			
PB 5	PWMN	NALLOFF	in			
PB 6	SCI	RXD	in			
PB 7	SCI	TXD	out			

Table 5.3.2.5.7.5-3: PB signal select table (select = 2)

pin name	module name	signal name	signal direction
PB 0	CCTIMER_2	MEAS	in
PB 1	PWMN	HS_U	out
PB 2	PWMN	HS_V	out

PRELIMINARY INFORMATION – Jan 18, 2017

pin name	module name	signal name	signal direction
PB 3	PWMN	HS_W	out
PB 4	GPIO_B	IO4	in / out
PB 5	SARADC_CTRL	DBG_SAMPLING	out
PB 6	PWMN	LS_X	out
PB 7	PWMN	HS_X	out

Table 5.3.2.5.7.5-4: PB signal select table (select = 3)

pin name	module name	signal name	signal direction
PB 0	SARADC_CTRL	MUX_2	out
PB 1	SARADC_CTRL	MUX_1	out
PB 2	SCI	RXD	in
PB 3	CCTIMER_2	PWM	out
PB 4	SCI	TXD	out
PB 5	PRE_PWM / CCTIMER	SYNC_W	in
PB 6	PRE_PWM / CCTIMER	SYNC_W	in
PB 7	SARADC_CTRL	DBG_SAMPLING	out

5.3.2.5.7.6 PC IO group pins signal selection table

- for each PC pin, one of 16 signals can be selected from the table below
- each PC pin has it's own 16 to 1 IO signal multiplexer which can be configured using a 4 bit select value
- for every PC pin a different select value can be configured
- the following table is valid for all PC pins

-			<u> </u>	
I able	5.3.2.5	.7.6-1: P	C signal	select table

select	module name	signal name	signal direction				
0	GPIO_C	PC pin related IO	in / out				
1	SPI_1	NSS	in / out				
2	SPI_1	SCK	in / out				
3	SPI_1	SDO	out				
4	SPI_1	SDI	in				
5	CCTIMER_0	MEAS	in				
6	CCTIMER_0	PWM	out				
7	CCTIMER_1	MEAS	in				
8	CCTIMER_1	PWM	out				
9	CCTIMER_2	MEAS	in				
10	CCTIMER_2	PWM	out				
11	CCTIMER_3	MEAS	in				
12	CCTIMER_3	PWM	out				
13	PRE_PWM	SYNC_U	in				
14	PRE_PWM	SYNC_V	in				
15	SARADC_CTRL	SYNC_OUT	out				

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

5.3.2.5.7.7 Register Interface

Table 5.3.2.5.7.7-1: Registers

Register Name	Address	Description
PA_IO_SEL	0x00	IO signal select register
PB_IO_SEL	0x02	IO signal select register
PC0123_IO_SEL	0x04	IO signal select register
PC4567_IO_SEL	0x06	IO signal select register
PA_LOCK	0x08	IO signal select lock register
PB_LOCK	0x0A	IO signal select lock register
PC_LOCK	0x0C	IO signal select lock register

Table 5.3.2.5.7.7-2: Register PA_IO_SEL (0x00) IO signal select register

	MSB															LSB
Content	15:1 4		13:1 2		11:1 0		9:8		7:6		5:4		3:2		1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	 15:14: sel_7 - PA7 module signal assignment selection 13:12: sel_6 - PA6 module signal assignment selection 11:10: sel_5 - PA5 module signal assignment selection 9:8: sel_4 - PA4 module signal assignment selection 7:6: sel_3 - PA3 module signal assignment selection 5:4: sel_2 - PA2 module signal assignment selection 3:2: sel_1 - PA1 module signal assignment selection 															

Table 5.3.2.5.7.7-3: Register PB_IO_SEL (0x02) IO signal select register

	MSB															LSB
Content	15:1 4		13:1 2		11:1 0		9:8		7:6		5:4		3:2		1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:14 13:12 11:10 9:8 : 9 7:6 : 9 5:4 : 9 3:2 : 9 1:0 : 9	: sel_ : sel_ : sel_ sel_4 - sel_3 - sel_2 - sel_2 - sel_1 - sel_0 -	7 - PB 6 - PB 5 - PB • PB4 1 • PB3 1 • PB3 1 • PB1 1 • PB1 1	7 moc 6 moc 5 mod nodule nodule nodule nodule	lule sig lule sig e signa e signa e signa e signa e signa	gnal as gnal as gnal as al assig al assig al assig al assig	ssignm ssignm ssignm gnmer gnmer gnmer gnmer	nent se nent se nent sele nt sele nt sele nt sele nt sele	election election ction ction ction ction ction	n n n						

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:1 2				11:8				7:4				3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	/WR	R/W						
Bit Description	15:12 11:8 : 7:4 : s 3:0 : s	: sel3 sel2 - sel1 - l sel0 - l	- PC3 PC2 I PC1 m PC0 m	modu module odule	ile sigi e signa signal signal	nal assi al assi assig assig	signme gnmer nment nment	ent sel nt sele : selec : selec	ection ction tion tion							

Table 5.3.2.5.7.7-4: Register PC0123_IO_SEL (0x04) IO signal select register

Table 5.3.2.5.7.7-5: Register PC4567_IO_SEL (0x06) IO signal select register

	MSB															LSB
Content	15:1 2				11:8				7:4				3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	/WR	R/W						
Bit Description	15:12 11:8 : 7:4 : s 3:0 : s	: sel7 sel6 - sel5 - l sel4 - l	- PC7 PC6 PC5 m PC4 m	7 modu module nodule nodule	ile sigi e signa signal signal	nal ass al assig assigi assigi	signme gnmer nment nment	ent sel nt sele selec selec	ection ction tion tion							

Table 5.3.2.5.7.7-6: Register PA_LOCK (0x08) IO signal select lock register

	MSB															LSB
Content	15:8								7:0							
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : must will al 7:0 : I 0: sel 1: sel Note:	pass be wri ways l ock - ection ection once	- pass tten as pe rea unlock locked	word s 0xA5 d as 0 d as 0 ked d l, the s	x96 electio	on can	not be	e unloc	ked a	gain.						

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:8								7:0							
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 must will al 7:0 : I 0: sel 1: sel Note:	pass be wri ways l ock - ection ection once	- pass tten as be rea unlock locked	word s 0xA5 d as 0 ked d l, the s	x96 selectio	on can	not be	e unloc	ked a	gain.						

Table 5.3.2.5.7.7-7: Register PB_LOCK (0x0A) IO signal select lock register

Table 5.3.2.5.7.7-8: Register PC_LOCK (0x0C) IO signal select lock register

	MSB															LSB
Content	15:8								7:0							
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 must will al 7:0 : I 0: sel 1: sel Note:	be wri ways I ock - ection ection once	- pass tten as be rea unlock locked	word s 0xA5 d as 0 ked d l, the s	x96 electio	on can	not be	e unloc	ked a	gain.						

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

5.3.2.5.7.8 IO MUX setup example

|| /* 523.99 - 523.01 die-to-die configuration */ IOMUX_CTRL_PA_IO_SEL_bit.sel_0 = 1; /* SPI_0 SCK */ IOMUX_CTRL_PA_IO_SEL_bit.sel_1 = 1; /* SPI_0 SDI */ IOMUX_CTRL_PA_IO_SEL_bit.sel_2 = 1; /* SPI_0 SDO */ IOMUX_CTRL_PA_IO_SEL_bit.sel_3 = 1; /* SPI_0 NSS */ IOMUX_CTRL_PA_IO_SEL_bit.sel_4 = 1; /* SYS_STATE TARGET_CLK */ IOMUX_CTRL_PA_IO_SEL_bit.sel_5 = 1; /* PWMN LS_U */ IOMUX_CTRL_PA_IO_SEL_bit.sel_6 = 1; /* PWMN LS_V */ IOMUX_CTRL_PA_IO_SEL_bit.sel_7 = 1; /* PWMN LS_W */ IOMUX_CTRL_PB_IO_SEL_bit.sel_0 = 1; /* SCI RXD */ IOMUX_CTRL_PB_IO_SEL_bit.sel_1 = 1; /* SCI TXD */ IOMUX_CTRL_PB_IO_SEL_bit.sel_2 = 1; /* PWMN HS_U */ IOMUX_CTRL_PB_IO_SEL_bit.sel_3 = 1; /* PWMN HS_V */ IOMUX_CTRL_PB_IO_SEL_bit.sel_3 = 1; /* PWMN HS_V */ IOMUX_CTRL_PB_IO_SEL_bit.sel_4 = 1; /* PWMN HS_V */ /* 523.99 external pins configuration example */ $IOMUX_CTRL_PB_IO_SEL_bit.sel_5 = 0;$ /* GPIO_B IO5 */ /* GPIO_B IO6 */ $IOMUX_CTRL_PB_IO_SEL_bit.sel_6 = 0;$ $IOMUX_CTRL_PB_IO_SEL_bit.sel_7 = 0;$ /* GPIO_B IO7 */ IOMUX_CTRL_PC0123_IO_SEL_bit.sel_0 = 13; /* PRE_PWM SYNC_U */ /* GPIO_C IO1 */ IOMUX_CTRL_PC0123_IO_SEL_bit.sel_1 = 0; /* GPIO_C IO2 */ $IOMUX_CTRL_PC0123_IO_SEL_bit.sel_2 = 0;$ $IOMUX_CTRL_PC0123_IO_SEL_bit.sel_3 = 0;$ /* GPIO_C IO3 */ /* GPIO_C IO4 */ $IOMUX_CTRL_PC4567_IO_SEL_bit.sel_4 = 0;$ $IOMUX_CTRL_PC4567_IO_SEL_bit.sel_5 = 0;$ /* GPIO_C IO5 */ /* GPIO_C IO6 */ $IOMUX_CTRL_PC4567_IO_SEL_bit.sel_6 = 0;$ /* GPIO_C IO7 */ $IOMUX_CTRL_PC4567_IO_SEL_bit.sel_7 = 0;$

5.3.2.5.8 FLASH Control Module (FLASH_CTRL)

This module implements FLASH protection, erase and program functionality.

Execution of program code located in FLASH memory strictly requires "read" mode. When switching to other FLASH modes (program or erase) the user has to ensure that during this time code is not executed from the same FLASH instance. Before returning to code in FLASH, mode has to be switched back to "read".

Features

- MAIN area protection (16 x 2K byte areas)
 - protected bits prevent related FLASH MAIN areas parts from changes by erase or program
 - · protect bits can be changed as long as the corresponding lock bits are not set
 - once lock bits are set they cannot be cleared again (protection lock can only be added)
- INFO area protection (2 x 512 byte areas)
 - · this protection configuration can only be set once and not changed afterwards
 - this configuration will be set by INFO boot program after power up
- INFO read protection (2 x 512 byte areas)
 - · this protection configuration can only be set once and not changed afterwards
 - · this configuration will be set by INFO boot program after power up
- supported modes (MAIN and INFO when not protected):

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

- mass erase
- page erase (512 byte)
- program
- read
- down to double-word (32 bit) programming
- · system frequency adaptive
- SECDED ECC protection
 - each 16 bit data word is extended by a 6 bit ECC
 - Hamming distance: 4 (1 bit error correctable, 2 bit errors detectable)

Erase and Program Sequences

The following sequence has to be done to do some FLASH erase:

1. select erase mode by MODE register

- MAIN mass erase / MAIN page erase / INFO page erase
- 2. do a single (16 bit) write to the base address of the area which has to be erased to start erase process
- 3. poll STATUS busy bit to determine when erase has been finished by the FLASH control module
- 4. switch back to previous FLASH mode (normally MAIN read)

The following sequence has to be done to do some FLASH program:

- 1. select program mode by MODE register
 - MAIN program / INFO program
- 2. split data into FLASH row (32 x 32 bit) aligned packets
- 3. for all these packets do:
 - 1. set WORD_CONFIG to number of 16 bit words which need to be programmed to FLASH row
 - only aligned 32 bit words are valid to be programmed !
 - for this only even number of 16 bit words are valid ! (2, 4, 6, ... up to 64)
 - to align a 16 bit words use the value 0xFFFF !
 - 2. for all 32 bit words of current packet do:
 - 1. write lower 16 bit word to desired FLASH address
 - 2. write upper 16 bit word to desired FLASH address to start 32 bit word program process
 - 3. poll STATUS.busy bit to determine when word program has been finished by FLASH control

module

- 3. at this point STATUS.incomplete has to be 0 !
- 4. switch back to previous FLASH mode (normally MAIN read)
- 5. verify written data by read and compare

Table 5.3.2.5.8-1: Registers

Register Name	Address	Description
AREA_MAIN_L	0x00	lower protection register
AREA_MAIN_H	0x02	upper protection register
MODE	0x04	mode register
STATUS	0x06	status register
AREA_INFO	0x08	info area write/erase protection
READ_INFO	0x0A	info area read protection
BIT_ERROR_ADD R	0x0C	bit error address register
WORD_CONFIG	0x0E	word prog config register
AREA_MAIN_L_LO CK	0x20	lower protection lock register

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

Register Name	Address	Description
AREA_MAIN_H_L OCK	0x22	upper protection lock register

Table 5.3.2.5.8-2: Register AREA_MAIN_L (0x00) lower protection register

	MSB															LSB
Content	15:8								7:0							
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : must will al 7:0 : a lower 1 : are 0 : are MAIN MAIN MAIN MAIN MAIN MAIN MAIN	: passi be wri ways I area - 8 FLA ea pro ea writ prote area area area Bits c	word - tten as be rea SH M tected able / ction a 0 : 0x0 1 : 0x0 6 : 0x3 7 : 0x3 an onl	s 0xA5 d as 0 AIN ar erasal reas c 0000 - 3800 - 3800 - 3800 - y be c	x96 rea wri offset a 0x07F 0x0FF 0x37F 0x3FF hange	te and addres F F F F d if co	l erase s spac	e prote ces:	oction lock b	its are	0.					

Table 5.3.2.5.8-3: Register AREA_MAIN_H (0x02) upper protection register

	MSB															LSB
Content	15:8								7:0							
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : must will alt 7:0 : a upper 1 : are 0 : are MAIN MAIN MAIN MAIN MAIN Note:	be wri ways l area - 8 FLA a prote area area area Bits c	word - tten as be rea ASH M tected able / ction a 8 : 0x4 9 : 0x4 14 : 0> 15 : 0> an onl	s 0xA5 d as 0 AIN a erasal reas c 000 - 800 - 800 - 7000 7800 y be c	x96 rea wr offset a 0x47F 0x4FF - 0x77 - 0x7F hange	ite and addres F F FF FF d if co	d erase s spac	e prote ces: nding	ection lock b	its are	0.					

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:8								7:0							
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : must will al 7:0 : r 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80 any o progra busy gram	passy be wri ways I mode : MAIN : INFC : MAIN : INFC : MAIN : MAIN ther w am/era flag of mode)	word - tten as be rea V read V read V prog V page V page V mass V and V ritten r ase mo status)	s 0xA5 d as 0 ram e erase erase s erase s erase s erase s erase s erase s erase	x96 mass e value i vrite a ter, co	erase results ccess nsider	in FL to app word	ASH M propria config	1AIN re te flas and re	ead m h addr ow pro	ode ress st gramr	arts pi ning ir	rogram	n/erase lete fla	e cycle g in pr	(see '0-

Table 5.3.2.5.8-4: Register MODE (0x04) mode register

Table 5.3.2.5.8-5: Register STATUS (0x06) status register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	3 : red 1 : FL 2 : wr 1: une 1 : inc 1: row currer 0 : bu 0: rea 1: bus	call_bu ASH r ite_err expect comple r progr nt num sy - dy sy (pro	ISY - ecall is or - ed write te - rammin ber of gram	s activ te to a ng inco progra or eras	e (only rea pro omplet amme se is s	v used otected e d row t till in p	at sys d men words progres	stem si nory oc != woi ss)	tartup ccurree rd_cor	and w d, will nfig (se	ill be h be clea	andlea ared w ow)	d by S /hen S	tartup TATU	ROM	code) ad

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:8								7:0							
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : must will al 7:0 : a 2 FLA 1 : are 0 : are INFO INFO INFO Note:	: passi be wri ways l area SH IN ea pro ea writ protec area (area (area (word tten as be rea IFO ar tected able / ction a 0 : 0xF 1 : 0xF egiste	oxA5 d as 0 ea wri erasal reas o C00 - E00 - r can c	x96 te and ble ffset a 0xFDF 0xFFF only be	erase ddres: F F writte	e prote s spac	ction es: e !								

Table 5.3.2.5.8-6: Register AREA_INFO (0x08) info area write/erase protection

Table 5.3.2.5.8-7: Register READ_INFO (0x0A) info area read protection

	MSB															LSB
Content	15:8								7:0							
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	must will al 7:0 : a 2 FLA 1 : are 0 : are INFO INFO INFO Note:	be wri ways I area SH IN ea pro ea rea proteo area (area 1 This r	IFO ar tected dable ction a 0 : 0xF 1 : 0xF egiste	s 0xA5 d as 0 rea rea (read reas o C00 - E00 - r can o	x96 d prot data v ffset a 0xFDI 0xFFF only be	ection vill be ddres: F F writte	in use 0x000 s spac	er prog 0) ces: e !	Iram							

Table 5.3.2.5.8-8: Register BIT E	RROR ADDR (0x0C) bit error address register
J –	_ \	

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0	addr	- addre	ess off	set of	last FL	ASH	bit erro	or							

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:8								-	-	5:0					
Reset value	1	0	0	1	0	1	1	0	0	0	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : must will al 5:0 : o 1 : 2 v 31 : 3 63 : 6 Note: writte	passy be wri ways I config vords 2 word 2 word 4 word numb n first)	word - tten as pe rea - num ds ds (con er of v	s 0xA5 d as 0 ber of mplete vords I	x96 16 bit row) nas to	words be eve	to pro	ogram uble-w	within vord pr	a row rogram	nming	only, k	ow add	dress	has to	be

Table 5.3.2.5.8-9: Register WORD_CONFIG (0x0E) word prog config register

Table 5.3.2.5.8-10: Register AREA_MAIN_L_LOCK (0x20) lower protection lock register

	MSB															LSB
Content	15:8								7:0							
Reset value	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : must will al 7:0 : a lower 0 : are 1 : are Note:	passv be wri ways l area - 8 FLA ea pro ea pro Bits s	word - tten as be rea SH M tectior tectior tectior et to '1	3 0xA5 d as 0 AIN ar config config ' (lock	x96 eas w guratic guratic ed) ca	rite an on not on lock unnot b	d eras lockec ed be clea	e prot I Ired ag	ection gain!	lockin	g					

Table 5.3.2.5.8-11: Register AREA_MAIN_H_LOCK (0x22) upper protection lock register

	MSB															LSB
Content	15:8								7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : must will al 7:0 : a upper 0 : are 1 : are Note:	passv be wri ways l area - 8 FLA ea pro ea pro Bits s	word - tten as be rea ASH M tectior tectior et to '1	s 0xA5 d as 0 AIN a config config (lock	x96 reas w guratic guratic ed) ca	rrite ar on not on lock	nd eras locked ced be clea	se pro I ared aç	tection gain!	lockir	ng					

5.3.2.5.9 SPI Module (SPI)

Features

• the SPI interface consists of the following 4 signals:

PRELIMINARY INFORMATION - Jan 18, 2017

- SCK: SPI clock (driven by master)
- NSS: low active slave select (driven by master)
- SDO: data out
- SDI: data in
- can be used as master or slave
 - master speed up to f_sys / 4
 - slave speed upto f_sys / 8
- configurable phase, polarity and bit order
- configurable word bit length
- multiple data word transfer support
- slave mode SPI clock monitoring (timeout)
- 4 data word transmit and receive FIFOs

Register Name	Address	Description
DATA	0x00	data register
DATA_KEEP_NSS	0x02	keep NSS data register
CONFIG	0x04	config register
BAUD_CONFIG	0x06	baud config register
TIMEOUT_CON- FIG	0x08	timeout config register
RX_FIFO_TIMEOU T	0x0A	RX FIFO timeout config register
FIFO_CLEAR	0x0C	FIFO clear register
FIFO_LEVELS	0x0E	FIFO level config register
IRQ_STATUS	0x20	IRQ status register
IRQ_MASK	0x24	IRQ mask register
IRQ_VENABLE	0x28	IRQ vector enable register
IRQ_VDISABLE	0x2A	IRQ vector disable register
IRQ_VMAX	0x2C	IRQ max vector register
IRQ_VNO	0x2E	IRQ vector number register

Table 5.3.2.5.9-1: Registers

Table 5.3.2.5.9-2: Register DATA (0x00) data register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : read: does	write: receiv not ke	trans er dat ep cst	mit dat a o active	a e after	data t	ransm	it					•	•		

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

Table 5.3.2.5.9-3: Register DATA_KEEP_NSS (0x02) keep NSS data register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Bit Description	15:0 : keep	write: nss ac	trans	mit da fter da	ta Ita trar	nsmit										

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15	-	13	12	11	10	9	8	7:4				3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	1
Access	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15 : e 0: SP 1: SP Note: interfa 13 : s 0: SD 1: SD 12 : s 11 : p minim 0: 1 b 1: 2 b when this cc 10 : in 9 : inv 0: act 1: act 8 : sla 0: driv 1: mis when this cc 7:4 : I data v exam 3 : sla 0: ma 1: sla 2: po 0: clo 1: clo	nable I interf I interf I interf I interf I enable ace is of wap_s I = dat di_irq_ ause_s it leng SPI in onfig b nvert_c vert_ns ive low ive hig ave_hig vert_ns ive low ive hig ave_hig vert_s SPI in onfig b nvert_c vert_ns ive low ive hig ave_hig vert_s SPI in onfig b nvert_c vert_s SPI in onfig b nvert_c vert_s SPI in onfig b nvert_c vert_s SPI in onfig b ster ve larity - ck off I ase - edge der - B first B first	ace is ace is ace is a = 0 disable disable di_sde_sde_sde_sde_sde_sde_sde_sde_sde_sde	disable enable lears ed, the bot, SDC but, SDC but, SDC sDI int ft NSS e is con nored invert SF when bit con e is con nored to e is con	ed ed interfa FIFO D = da O = d errupt inacti inacti nfiguro PI sele SPI in PI sele SPI in high nfiguro h + 1 3 bit tr 16 bit 16 bit	ce FIF 's are ta out ata inp active ve tim ed as out an- ct sign tterfac Z ed as transfe transfe transfe transfe shift	O's (a kept c but e level, e slave: d outp al e is co maste er fer	is long lean) in cas ut data onfigure	as the se of in a	slave:	NSS					

Table 5.3.2.5.9-4: Register CONFIG (0x04) config register

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : divide min d -> ma max c -> mir exam max b min b	divide r = (s) ivider x baud divider baud baud ple: Fs baudra audrat	er - value = drate = value lrate = Sys = 3 te = 8 te = 24	clock f = 2 = Fsys = 655 Fsys 32MHz MBau 4 Bau	reque / 4 35 / 1310 d d	ncy) / 70	(2 * ba	audrate	9)							

Table 5.3.2.5.9-5: Register **BAUD_CONFIG** (0x06) baud config register

Table 5.3.2.5.9-6: Register TIMEOUT_CONFIG (0x08) timeout config register

	MSB															LSB
Content	15:0															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : maxin	sclk_ num a	timeou Ilowed	it - scll count	k time of sys	out val stem c	ue lock c	vcles b	etwee	en 2 SF	PI cloc	k edge	es			

Table 5.3.2.5.9-7: Register **RX_FIFO_TIMEOUT** (0x0A) RX FIFO timeout config register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : time i timeo timeo	rx_fife n bits ut will ut will	b_time until re be res be set	eout - eceive tarted when	timeou when count	ut ever new ir ed to z	nt ncomir zero a	ng data nd RX	a byte _FIFO	.state	= non	empty	1			

Table 5.3.2.5.9-8: Register **FIFO_CLEAR** (0x0C) FIFO clear register

	•		_		•	,		•								
	MSB															LSB
Content														2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	W	W	W
Bit Description	2 : res 1: mo 1 : tx_ 1: tran 0 : rx_ 1: rec	set - dule ro _fifo_c nsmit l _fifo_c eiver l	eset lear - FIFO c lear - FIFO c	lear												

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	14:1 2			-	10:8			-	6:4			-	2:0		
Reset value	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Access	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W
Bit Description	14:12 interru 10:8 : interru 6:4 : t 2:0 : r	: tx_fi upt will rx_fifo upt will x_fifo_ rx_fifo	fo_low l be as o_high l be as _level _level	/_wate sertec _wate sertec - trans - recei	er - low I wher r - hig I wher mit FII ve FIF	v water h trans h wate n recei FO fill FO fill I	r trans mit FIF r rece ve FIF level (evel (r	mit FIF FO fill ive FIF O fill le read o ead or	O lev level d O lev evel in nly fifo	el lecreas el crease statu status	ses to es to th s) s)	this va	alue ue			

Table 5.3.2.5.9-10: Register IRQ_STATUS (0x20) IRQ status register

	MSB															LSB
Content	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15 : b 14 : b 13 : b 12 : n 11 : n 10 : n 9 : rx_ 8 : evi 7 : evi 6 : evi 5 : evi 4 : evi 3 : evi 1 : evi 0 : evi 0 : evi 0 : evi	<_fifo_ <_fifo_ <_fifo_ <_fifo_ <_fifo_n t_shift t_sclk_ t_sclk_ t_sot - t_sot - t_tx_fi t_tx_fi t_tx_fi t_rx_fi t_rx_fi	nfull - low_w empty full - r high_v timeou empty _done _timeou sbart of start of fo_ur_ fo_ov_ fo_ur_ fo_ov	transn ater - - trans eceive water - ut - rece - per out - sc ad con of trans of trans of trans err - s err - s err - s	nit fifo transm smit fif fifo is receive ceive fifo word s clk time nfig.sd sfer (n oftwar softwar softwar	is not nit fifo fo is en full ve fifo tim o is no shift in eout in i_irq_i ss has re shas re wro re has re did	full eleme mpty eleme eout terrupt terrupt schang schan not wr te data read f not rea	nts <= ty when t arity w ged to ged to itten o a to ful rom er ad inco	i low w high w a wor vhile N inactive utgoin l trans mpty ro oming	vater le ater le d shift SS wa ve level g data mit fifo eceive data fa	evel comp as activel) a fast e o fifo ast end	leted ve enough	1			

Table 5.3.2.5.9-11: Register IRQ_MASK (0x24) IRQ mask register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : 1: ena 0: disa	mask abled abled	- ena	ble irq	sourc	e		·			·			·	·	

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : v	/no - v	ector i	numbe	er of in	terrup	t to en	able								

Table 5.3.2.5.9-12: Register IRQ_VENABLE (0x28) IRQ vector enable register

Table 5.3.2.5.9-13: Register IRQ_VDISABLE (0x2A) IRQ vector disable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : v	vno - v	ector	numbe	er of in	terrupt	to dis	able								

Table 5.3.2.5.9-14: Register **IRQ_VMAX** (0x2C) IRQ max vector register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W
Bit Description	4:0 : v softwa vector	/max - are wr r numl	· need ites cu per) ca	ed for Irrent v an nes	nesteo /ector t	d interi numbe	rupt su er to th	ipport nis reg	ister, s	so only	r interr	upts w	ith hig	her pr	iority (lower

Table 5.3.2.5.9-15: Register IRQ	VNO (0x2E)	IRQ vector r	number register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	4:0 : v read: when write:	/no - vector no irq vector	r numb is per r numb	per of ending t	enable he firs nterru	d peno t unus pt eve	ding in ed irq nt to c	terrupt numbe lear	t with I er is re	nighes eturned	t prior 1.	ity (sm	allest	vector	numb	er).

5.3.2.5.10 LIN-SCI Module (SCI) Features

- Full duplex operation
- 8N1 data format, standard mark/space NRZ format
- Extended baud rate selection options
- Interrupt-driven operation with four flags: receiver full, transmitter empty, measurement finished, break character received

Special LIN Support:

- 13 Bit break generation
- 11 Bit break detection threshold
- A fractional-divide baud rate pre-scaler that allows fine adjustment of the baud rate
- Measurement counter which has 16 bits and can be used as a mini-timer to measure break and bit times (baud rate recovery).

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

- Baud Measurement Results can directly be fed into the baud register to adjust the baud rate (Baud self-synchronization with SYNC byte)
- SYNC Byte plausibility check
- DMA support
- Timer-Compare Module for
 - LIN Bus Idle measurement
 - LIN Break measurement (used for auto addressing)
 - LIN Frame Length measurement

Figure 5.3.2.5.10-1: SCI block diagram

Functional Description

General function can be derived from Register description.

Concurrent Break Measurement

Concurrent break measurement works independent from the receiver status and detects breaks of length of 10 nominal bit length (respectively 11 nominal bit length when LIN mode is set) in combination with AUTO_MEAS a valid break signal starts measurement of a SYNC byte. After the SYNC byte measurement the MF (measurement finish) flag is set and must be processed by the software. The concurrent break measurement will only work when the MF bit is cleared.

Note: Since concurrent break measurement is based on the actual baud_rate and concurrent break measurement is also enabled during sync byte measurement the actual baud_rate must not exceed 10 times (respectively 11 times when LIN mode is set) the expected baud rate of the external SCI. Otherwise low bits of the sync byte are detected as breaks and sync break measurement will be canceled.

Condition: Actual baud_rate < 11 x expected external baud_rate

Example: When setting internal baud_rate to 115200 baud concurrent baud measurement works with external baud_rates down to 10472 baud. The external baud_rate = 9600 baud can not be synchronized.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

Concurrent break measurement can be used to support LIN requirement of interrupting ongoing frames by a new break/sync header.

Baud rate

The divider can be used to achieve divisor values between 1 and 2047,96875. The baud divisor fine adjust can be used to fine tune the baud rate in 1/32 steps of the divisor. Use the following formula to calculate the SCI baud rate:

baud rate = sys clock frequency / (16 * (BD + BDFA))

Note: The 16 bit baud divisor value represents the number of system clock cycles of two bit lengths. The result of a baud measurement(see measurement counter below) can directly be written to the baud rate register.

DMA

Start DMA transfer by writing a length to the LENGTH register. Set a valid base address to the DMA_ADDRESS register before. Write access to the Address register during DMA operation will be ignored.

The LENGTH register will be decremented, the ADDRESS register will be incremented with each transferred data. If an error occurs the DMA finish flag will be raised and the DMA controller will stop operation and has to be restarted by accessing the LENGTH register.

Check DMA_LENGTH register and SCI error flags when DMA finished flag is set to check if the DMA transfer aborted abnormally. Possible error cases are:

for TX: transmitter disabled, bus_collision

for RX: receiver disabled, frame error, overflow error (Note: receiver will be disabled during sync byte measurement, this also leads to a RX DMA abort)

SCI flags are not suppressed during DMA operation. The RDRF flag and the TDRE flag will be handled and reset by the DMA controller. Reading/writing of the DATA_IO register is prohibited during DMA operation.

Symbol	Min	Тур	Max	Unit	Description
t _{BFS}		1/16	2/16	T _{BIT}	value of accuracy of the byte field detection
t _{EBS}	7/16			Тыт	earliest bit sample time
					t _{EBS} <= t _{LBS}
t _{LBS}			10/16 - t _{BFS}	T _{BIT}	latest bit sample time
					$t_{EBS} \le t_{LBS}$

Table 5.3.2.5.10-1: LIN Parameters

Table 5.3.2.5.10-2: Registers

Register Name	Address	Description
BAUD_RATE	0x00	baud config register
CONTROL	0x02	control register
STATUS	0x04	status register
DATA_IO	0x06	data register
MEAS_CONTROL	0x08	measurement control register
MEAS_COUNTER	0x0A	measurement counter register
LIN_CONFIG	0x0C	LIN SCI Configuration
LIN_MODE	0x0E	LIN Mode Register
ADDON_IRQ_EN	0x10	Add-on Interrupt Enable
ADDON_IRQ_STA	0x12	Add-on Interrupt Status
Т		
TIMER_COUNTER	0x14	Timer Counter

PRELIMINARY INFORMATION - Jan 18, 2017

Register Name	Address	Description
TIMER_COMPARE	0x16	Timer Compare
DMA_TX_ADDRES S	0x18	Transmit DMA Address
DMA_TX_LENGTH	0x1A	Transmit DMA Length
DMA_RX_ADDRE SS	0x1C	Receive DMA Address
DMA_RX_LENGTH	0x1E	Receive DMA Length
IRQ_STATUS	0x30	IRQ status register
IRQ_MASK	0x34	IRQ mask register
IRQ_VENABLE	0x38	IRQ vector enable register
IRQ_VDISABLE	0x3A	IRQ vector disable register
IRQ_VMAX	0x3C	IRQ max vector register
IRQ_VNO	0x3E	IRQ vector number register

Table 5.3.2.5.10-3: Reg	ster BAUD	_RATE (0x00)	baud config re	gister
-------------------------	-----------	--------------	----------------	--------

		-				,										
	MSB															LSB
Content	15:5											4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:5 Diviso 0x000 0x002 0x007 4:0 : I These timing BDFA BDFA BDFA BDFA BDFA BDFA Chiene BDFA BDFA BDFA BDFA BDFA BDFA BDFA BDFA	BD - Dr: D> 1 I> 2 2> 3 7> 8 BDFA e bits s g resol [0000 [0001 [0001 [0001 [0001 [0001 [0001 [0001 [0001] [0001 [0001] [0000 [0001] [0000 [0000] [0001] [0000] [000	SCI ba (bypa (bypa - SCI select ution c 0] = 0/ 1] = 1/ 0] = 2/ 0] = 1(1] = 3 can be can be	baud div ss divi baud c baud c the nu on the (32 = 0) (32 = 0)	der) der) divisor mber (averag) 0.0312 0.0625 0.0625 0.968 to acl to fine a to ca D+BD visor v paud r ster.	fine a of cloc ge bau 5 75 nieve of tune f alculat FA)) value r neasu	djust ks ins id freq divisor he ba e the s repres	values values ud rate SCI ba ents th t(see r	n each show s betw in 1/3 ud rat	reen 1 32 step e: nber of iremer	and 2 and 2 syste	ycle fr wing ta 047.96 ne divis m cloc nter be	ame to able. 5875. ⁻ sor. sor.	ο achie Γhe ba es of to an dire	eve mo uud div wo bit ectly b	isor e writ-

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7 : TII 6 : LIN LIN b 5 : RI 4 : BII 3 : TE If soft a) lin= off the ing TI b) lin= flag. V 2 : RE RE se cause setting gener 1 : MF 0 : SE ToggI long a ively reset	Ξ - TX N - LIN reak re Ξ - RX Ξ - bre Ξ - tran ware c =0: the e last f Ξ . =1: the Wait un Ξ - rece to '0 e erron g RE t vation (FIE - m SK - see ing SB ing SB 13 bit). value:	D inter I-Mode ceceive (D inter eak def smitte clears frame rame i transe rame i transe rame i transe rame i eiver e ' supple ous o o '0' de (RDRF neasur end bre BK sen plies o (is se	rrupt e e: LIN detec: rrupt e tection r enab TE wh e in the n a me mitter f enable resses data re uring a contable rement eak bit dds one clearing t, the t	nable break tion er enable interr ele a trans essage trans estart l eceptic an ong eived o t finish e brea g the S ransm	(gener transminable ((gener upt en ansmi mit sh e, alwa liately e-enal oit recon and oing tr data sh interr k char SBK bi itter co	rates in nit ena detect rates i able (g ssion i ift regia sys wa fills the ole the ognitio interru ansfer nould k upt en acter (t befor	nterrup ble (13 s a 11 nterrup genera is in pr ster cc it for T e trans trans trans can c be igno able (g 10 log e the b es to s	ot whe 3 bit b bit bro- ot whe tes int ogres ontinue DRE 1 smit sh mitter. ing RI neratic ause of pred genera ic 0s, oreak end co	n TDR reak sy eak sy ean RDF terrupt s (TC es to sh to go h hift reg E to '1' on (RD errone ates int respec charac omplet	E is so ymbol mbol i RF is s when = 0) hift out high af ister w during RF) ous da rerrupt ctively cter ha e brea	et) instead set) BRF i t. To a ter the vith on- vith on- data rec when 13 log s finis k chai	d of 10 s set) void a last fr es and ngoing eption MF is ic 0s i hed tra racters	0 bit), bit) cciden rame b d sets t ans it set) f LINT ansmit s (10 b	tally c efore he TD fer car nterrup is set) ting. A its res	utting clear- PRE n ot s pect-

Table 5.3.2.5.10-4: Register CONTROL (0x02) control register

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

Table 5.3.2.5.10-5: Register STATUS (0x04) status register

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7:0 : 0	data -	SCI da	ata reg	ister, v	write fo	or tran	smittin	g byte	, read	receiv	ed by	te			

Table 5.3.2.5.10-6: Register DATA_IO (0x06) data register

Table 5.3.2.5.10-7: Register MEAS_CONTROL (0x08) measurement control register

Content - 13:8 Image: Content of the set of t		MSB															LSB
Reset value 0 0 1 0 <th< td=""><td>Content</td><td>-</td><td>-</td><td>13:8</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>4</td><td>3</td><td>2</td><td>1</td><td>0</td></th<>	Content	-	-	13:8						-	-	-	4	3	2	1	0
Access R R R/W R/	Reset value	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
Bit Description 13:8 : DBC - debounce filter threshold for baud rate measurement (MMODE=0), filter based on system clock period(Tsys_clk) Filter Threshold[6:1] -> MEAS_CONTROL[13:8] Threshold[6:1] -> MEAS_CONTROL[13:8] Threshold[0] -> forced to logic 1 Example: Debounce filter threshold set to decimal 81 results in a minimum filter delay of 81*Tsys_clk (-> 10.125us@8MHz) 4 : BUS_COLLISION_E bus collision check enable 0: disable function 1: check for LIN SCI bus collision during transmit, the actual transmitter will be hatled immediately (TE reset to 0), a running DMA transfer will be stopped, lin_bus_collision irq will be raised 3: AUTO_BAUD - automatically copy baud measurement result to baud config register after a valid baud measurement (expecting SYNC Byte) > AUTO_BAUD_TRIGGERED will be set NOTE: During baud measurement ther receiver is disabled an therefore no data will be received, only the measurement logic is active which will generate a measurement finish flag (configurable as interrupt) 2: AUTO_MEAS automatically start a baud rate measurement after reception of a valid break -> AUTO_MEAS_TRIGGERED will be set NOTE: AUTO_MEAS nature thinsh flag (configurable as interrupt) 2: AUTO_MEAS_TRIGGERED will be set NOTE: AUTO_MEAS mode suppresses the flag specific flag generation (see sci_status -> BRF)	Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
NOTE: only applicable together with MEN control bit 0 : MEN - measurement enable Set to '1' to start a measurement When measurement is finished, MEN bit will be cleared automatically NOTE: When AUTO_MEAS bit is set MEN must not be used NOTE: Writing a '0' to MEN resets the measurement logic and allows a clean restart	Access Bit Description	R 13:8 system Filter Thress Thress Exam 81*Ts 4 : BL bus c 0: dis 1: che again diatel 3 : AL auton ment > AL NOTE only t meas 2 : AL auton > AL NOTE 1 : MI 0: bau edges NOTE LIN p 1: bre zero	B B B B B B B B B B B B B B B B B B B	R/W - debck k period hold [6 :1] ->] -> fo ebound (-> 10 DLLISI n checc inction LIN S actual reset t SAUD ly copy cting S SAUD ng bau asurer nt finis MEAS - meas length d meas length d meas length	B/W punce f pod(Tsy S:0] is r MEAS rced to ce filte 0.125u ON_E k enab CI bus receiv o 0), a CI bus receiv o 0), a y baud SYNC F TRIG U ment lo Sh flag - TRIG AS m surement	R/W illter th s_clk) mappe _CON o logic er three is@8N ole collis co	ion du arresho ed to re ITROL 1 shold s /IHz) ion du . In ca ng DM sureme D will nent th active gurabl e meas D will uppres ode se unter red), d pects ounter	Id for the egister [13:8] eset to of a ring transfer for a ring transfer for a ring transfer for a ring transfer for a research which le as in the recearch which le as it is esent the lect runs whether a 0x55 for a runs whether runs whether a run	Ansmin bits: decima ansmin detection sfer w ult to h ever is n will g nterrup ent afte e flag ith syst cer is data with 10	ate me ate me al 81 rd t, the a cted co ill be s baud o s disable eneration ot) er rece specif stem c enable byte to 6 x bau	esults esults actual f ollision stopper config r oled ar te a ic flag lock ar ed o meas ud rate	in a m transm the tra d, lin_l registe of a va gener nd me sure, th e, mea	inimur (MMOI inimur hitted b ansmit bus_co r after fore no lid bre ation (asures his is t sures f	DE=0) n filter oit will clision a valie o data c data see so time w	delay be che be che be ha irq wi d bauc will be ci_stati betwe NC by then R	of of ccked alted in Il be ra I meas recei us -> E en 4 fa te in th XD lin	nme- aised sure- ved, BRF) alling ne e is
Set to '1' to start a measurement When measurement is finished, MEN bit will be cleared automatically NOTE: When AUTO_MEAS bit is set MEN must not be used NOTE: Writing a '0' to MEN resets the measurement logic and allows a clean restart			E: only	applic	able to	ogethe	er with	MEN	contro	l bit							
When measurement is finished, MEN bit will be cleared automatically NOTE: When AUTO_MEAS bit is set MEN must not be used NOTE: Writing a '0' to MEN resets the measurement logic and allows a clean restart		U : MI	=IN - m \ '1' to	ieasur start a	ement	enabl	e ent										
NOTE: When AUTO_MEAS bit is set MEN must not be used NOTE: Writing a '0' to MEN resets the measurement logic and allows a clean restart		When	n meas	sureme	ent is f	inishe	d, MEI	N bit w	ill be o	cleared	d autor	natica	lly				
NOTE: Writing a '0' to MEN resets the measurement logic and allows a clean restart		NOTE	E: Whe	en AU		EAS b	it is se	t MEN	must	not be	e used		,				
		NOTE	E: Writ	ing a '	0' to M	EN re	sets th	ne mea	asuren	nent lo	gic an	d allov	vs a cl	ean re	estart		

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

Table 5.3.2.5.10-8: Register MEAS_COUNTER (0x0A) measurement counter register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 : Count When meas repea Note: 4 and can b	count ter is c the m ureme ted wi In Bau round e fed i	: - MEA leared neasur nt will th an a ud mea led (re nto the	ASURI I by ev ement be sto adapte asuren sulting e baud	EMEN ery sta pped d baud nent m 2 bit divide	T COU art of a er ove (MF fla d rate node the length er regis	JNTEF a new erflows ag set) setting ne res value ster to	R measu the co). The J. ult of the adjust	uremen ounter measu he bau esultin t the b	nt value ureme ud mea g 16 b aud ra	is satu nt sho asuren vit ute.	urated uld be nent (8	to 0xF 3 bit lei	FFF a	ınd the s divid	ed by

Table 5.3.2.5.10-9: Register LIN_CONFIG (0x0C) LIN SCI Configuration

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:4				3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	7:4 : (3 : DN 2 : SC 1 : TX 0 : Co	0x0 an MA mc CI inter (D time oncurre	id 0x8 idule ii mal tin e-out e ent bre	reserv mplem ner mo enable eak me	ved for ented odule in regist easure	forme mplem er imp ment i	er prod lented lemen mplen	ucts ted nented								

PRELIMINARY INFORMATION – Jan 18, 2017

_	MSB															LSB
Content	-	-	-	-	-	-	-	8	7	6:5		4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Access	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R
Bit Description	8 : TX Enabl 12ms forcec 7 : tim Timer 0: 1us 1: 16 6:5 : 0: nor 1: res timer_ 2: res timer_ 2: res timer_ 3: res timer_ 3: res timer_ 3: res timer_ 3: res timer_ 3: res timer_ 2: sc 0: 10 0: 10 0 0: 10 0: 10 0: 10 0 0: 10 0 0: 10 0 0	CD time e TXE timeo d to 1. her_clk count s clock x bauc Timer mal op tart tim _prepa tart tart tart tim _prepa tart tart tart _prepa tart tart tart _prepa tart tart tart tart tart _prepa tart tart tart tart tart tart tart tar	e-out e o time- ut cou See to c_base ts with c base ts with c rate Preparion or bit ner fro tre bit ner fro tre bit ng as t comparis nable runnin ning er is in ble ue aken fr ue gnal (d	re on able out co nter: li cd_tim d_tim m 0 w will be m 0 w will be m 0 w will be m 0 w will no will no imer_t are rec og(rese creme nused se SCI on disa rated om rec	hen a reset hen a reset hen a reset hen a t be re prepar jister.t et cour nted b , use s gene bled, TXD) gister	falling falling immed falling when falling eset au e is >(imer_1 nter to signal rated ⁻ incom	active below RXD diately RXD a valic RXD tomat 0 no co orepar 0) r_clk_ from F	txd sig txd sig edge is edge is break edge is ically ompare e work base iV_Co	gnal fo s dete s dete s dete s dete s dete s only ntrol E	cted. cted. tected cted ots will v with t	be ge imer_e	12ms nerate enable e txd_	the tx ed, this =1 val as	d outp allows	ut will s prelo	ading

Table 5.3.2.5.10-10: Register LIN_MODE (0x0E) LIN Mode Register

Table 5.3.2.5.10-11: Register ADDON_IRG	_EN (0x10) Add-on Interrupt Enable
---	---

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W							
Bit Description	7 : lin 6 : rx 5 : tx 4 : sci 3 : sci 2 : txc 1 : rxc 0 : rxc	_bus_ _dma_ _time _time _time _time d_time d_risin	collisic finishe r_ov IF r_cmp out IR g IRQ ng IRQ	on IRQ ed IRQ RQ ena IRQ e Q ena enable enable	enable enable able nable ble e e	e le e										

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7 : lin LIN bi write ' 6 : rx_ Recei write ' 5 : tx_ Trans write ' 3 : sci SCI T write ' 2 : txc 12ms write ' 1 : rxc RXD I write ' 0 : rxc	_bus_d us coll 1' to c _dma_ ve DM 1' to c _dma_ mit DM 1' to c i_timer 1' to c d_timer d_timer d_risin line ris 1' to c d_risin line fal 1' to c	collisic ision c lear in finishe IA trar lear in finishe MA tra lear in r_ov Dverflo lear in r_cmp Compa lear in out lear in g ling ed lear in	on letecte terrup ed nsfers terrup d w eve terrup re eve terrup excee terrup ge del terrup	ed, t finishe t finishe t t eded t t tected t tectec t	ed, e.g. ed, e.g	. dma_ J. dma	_rx_ler _tx_le	ngth = ngth =	0 erro	r cond	ition o	ccurre n occu	d ırred		

Table 5.3.2.5.10-12: Register ADDON_IRQ_STAT (0x12) Add-on Interrupt Status

|--|

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 : Timer timer 8bit a	timer coun overflo ccess	_coun ter is r ows. : read	ter unning LSB fi	g wher rst, MS	n timer SB dat	is ena a will I	ibled v	vith tim red du	ner_en	able. : SB rea	sci_tim d (atoi	ner_ov mic rea	flag is ad)	set w	hen

PRELIMINARY INFORMATION – Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : timer_ 8bit a data v Note: will be	timer cmp f ccess: vill be Timer gene	_comp lag is write stored comp rated	oare set wh LSB fi I durin are fla	en tim rst, va g LSB g will I	er rea lue wil read (NOT b	ches t l be w atomic e set a	imer_c ritten t c read, as long	compa o regis /write) g as tir	re valu ster wi mer_p	ue th MS repare	B acce > 0. T	ess; re -imer c	ad LSI overflo	∃ first, w eve	MSB nts

Table 5.3.2.5.10-14: Register TIMER_COMPARE (0x16) Timer Compare

Table 5.3.2.5.10-15: Register DMA_TX_ADDRESS (0x18) Transmit DMA Address

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : Start a For 8 Note:	dma_ addres bit wri Addre	tx_ade s of s te acc ss is i	dr ource ess wr ncrem	of tran ite LS ented	smit d B first with e	ata. then N ach Dl	/ISB. MA tra	nsfer	execut	ed.					

Table 5.3.2.5.10-16: Register **DMA_TX_LENGTH** (0x1A) Transmit DMA Length

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7:0 : d Lengt Value Write	dma_t h of da will b acces	x_leng ata to e decr s to re	ith be trar ement egister	nsmitte ed wit will ste	ed via h each op cur	DMA i 1 trans rent D	n BYT fer. MA op	E. eratio	n and	will res	start D	MA co	ontrolle	er.	

Table 5.3.2.5.10-17: Register DMA_RX_ADDRESS (0x1C) Receive DMA Address

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 Start For 8 Note:	dma_ addres bit wri Addre	rx_ad ss of d te acc ss is i	dr estina ess wi ncrem	tion of rite LS ented	receiv B first with e	ve data then N ach D	a. /ISB. MA tra	Insfer	execut	ted.					

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7:0 : 0 Lengt Value opera	dma_r h of da will b tion ai	x_leng ata to l e decr nd will	jth be trar ement restar	nsmitte ed wit t DMA	ed via h each contr	DMA i n trans oller.	n BYT fer. W	E. rite ac	cess to	o regis	ster wil	l stop	curren	t DMA	L.

Table 5.3.2.5.10-18: Register DMA_RX_LENGTH (0x1E) Receive DMA Length

Table 5.3.2.5.10-19: Register IRQ_STATUS (0x30) IRQ status register

	MSB															LSB
Content	-	-	-	-	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	11 : b (even 10 : r) (even 9 : tx_ (even 8 : sci (even 6 : txc (even 5 : rxc (even 3 : tra 2 : rec 1 : ev cleare 0 : ev other	us_co t is he c_dma_ t is he i_time t is he i_time t is he d_time t is he d_time t is he d_fallir t is he d_fallir t is he d_fallir t brea wise)	Ilision Id by S finishe Id by S finishe Id by S r_ov (I Id by S r_cmp Id by S out (Ie Id by S g (Ieve Id by S g (Ievel) Id by S (Ievel) Is (Ievel) s (Ievel) s (Ievel)	(level) SCI int ned (le SCI int ed (lev SCI int evel) - SCI int (level) - SCI int el) - SCI int - tran - recei el) - br	- ernal I vel) - ernal I el) - ernal I ernal I ernal I ernal I smit da ve dat easure eak re	ogic al ogic al ogic al ogic al ogic al ogic al ogic al acta regis a regis ement ceivec	nd has nd has nd has nd has nd has nd has gister e ster fu finish (l (ever	s to be s to be s to be s to be s to be s to be s to be empty ll (event nt is he	cleare cleare cleare cleare cleare cleare cleare is hele	ed othe ed othe ed othe ed othe ed othe ed othe ed othe d by S SCI int	erwise erwise erwise erwise erwise erwise erwise Cl inte)))) ernal lo logic a	ogic an and ha	id has s to be	to be e cleare	ed

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION – Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	11:0											
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	11:0 : 1: ena 0: disa NOTE 1: per 0: no NOTE 1: clea 0: do	mask abled abled i IRQ iding reques : IRQ ar rela not ch	- enal _STAT st STAT ted fla ange f	ole IRC FUS re US wr g ilag	Q sour ead: ur ite: cle	ce nmask ear eve	ed sta ent flaç	tus of a	all per	nding I	RQs					

Table 5.3.2.5.10-20: Register IRQ_MASK (0x34) IRQ mask register

Table 5.3.2.5.10-21: Register **IRQ_VENABLE** (0x38) IRQ vector enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	W	W	W	W
Bit Description	3:0 : ·	vno - v	/ector	numbe	er of in	terrup	t to en	able								

Table 5.3.2.5.10-22: Register IRQ_VDISABLE (0x3A) IRQ vector disable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	W	W	W	W
Bit Description	3:0 : v	/no - v	ector	numbe	er of in	terrup	t to dis	able			•		•			-

Table 5.3.2.5.10-23: Register IRQ_VMAX (0x3C) IRQ max vector register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : v softwa vecto	vmax · are wr r numl	- need ites cu ber) ca	ed for urrent v an nes	nesteo /ector t	d inter numb	rupt su er to th	ipport nis reg	ister, s	so only	/ interr	upts w	vith hig	lher pr	iority (lower

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : v read: when write:	/no - vector no IR vecto	^r numb Q is pe r numb	er of e ending per of i	enable the fir nterru	d peno rst unu pt eve	ding in sed IF nt to c	terrup {Q nur lear	t with I nber is	nighes s retur	t priori ned.	ity (sm	allest	vector	numb	er).

Table 5.3.2.5.10-24: Register IRQ_VNO (0x3E) IRQ vector number register

5.3.2.5.11 GPIO Module (GPIO)

This module gives access to general purpose digital IOs.

Features

- 8 IOs (ports)
- Interrupt capable
 - Positive IO signal edge interrupt
 - Negative IO signal edge interrupt

Table 5.3.2.5.11-1: Registers

Register Name	Address	Description
DATA_OUT	0x00	data out register
DATA_OE	0x02	output enable register
DATA_IN	0x04	data in register
DATA_IE	0x06	input enable register
DIRECTION_LOCK	0x08	direction lock register
IRQ_STATUS	0x30	IRQ status register
IRQ_MASK	0x34	IRQ mask register
IRQ_VENABLE	0x38	IRQ vector enable register
IRQ_VDISABLE	0x3A	IRQ vector disable register
IRQ_VMAX	0x3C	IRQ max vector register
IRQ_VNO	0x3E	IRQ vector number register

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W							
Bit Description	7:0 : 0	data -	output	data						•						

Table 5.3.2.5.11-2: Register DATA_OUT (0x00) data out register

Table 5.3.2.5.11-3: Register DATA_OE (0x02) output enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W							
Bit Description	7:0 : e 0: inp 1: out	enable ut put) -													

Table 5.3.2.5.11-4: Register DATA_IN (0x04) data in register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	7:0 : c	data -	input c	lata												

Table 5.3.2.5.11-5: Register **DATA_IE** (0x06) input enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W							
Bit Description	7:0 : e 0: inp 1: inp	enable ut path ut path	n is dis n is en	abled abled												

Table 5.3.2.5.11-6: Register **DIRECTION_LOCK** (0x08) direction lock register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7:0 : I lock c 0: unl 1: loc Note:	ock - orresp ocked ked once	oondin set, bit	g bits ts can	of OU ⁻ not be	CPUT_	_ENAE	3LE an in.	id INP	UT_EI	NABLE	Ē				

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION – Jan 18, 2017

	MSB															LSB
Content	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15 : e 14 : e 13 : e 12 : e 11 : e 9 : ev 8 : ev 7 : ev 6 : ev 5 : ev 4 : ev 3 : ev 2 : ev 1 : ev 0 : ev	vt_neg vt_pos vt_neg vt_pos vt_neg vt_pos_ t_pos_ t_neg_ t_neg_ t_neg_ t_neg_ t_neg_ t_pos_	g_7 (e s_7 (e g_6 (e s_6 (e g_5 (ev s_5 (ev _4 (ev _3 (ev _2 (ev _1 (ev _2 (ev _1 (ev _1 (ev _1 (ev _0 (ev _0 (ev _0 (ev	vent) - vent) - vent) - vent) - vent) - vent) - vent) - pent)	negati positive positive positive negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative	ive ed ve edg ve	ge eve ge eve ge eve ge eve ge eve e even e even e even e even e even e even e even e even e even	ent at I nt at IC ent at I nt at IC ent at IC nt at IC t at IC	O port O port O port O port O port O port D port D port D port D port D port D	t bit 7 bit 7 t bit 6 bit 6 t bit 5 bit 5 bit 5 bit 4 it 4 bit 3 bit 2 bit 2 bit 1 it 1 bit 0 it 0						

Table 5.3.2.5.11-7: Register IRQ_STATUS (0x30) IRQ status register

Table 5.3.2.5.11-8: Register IRQ_MASK (0x34) IRQ mask register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : 1: ena 0: disa	mask abled abled	- ena	ble IR(ີຊ sour	ce										

Table 5.3.2.5.11-9: Register IRQ_VENABLE (0x38) IRQ vector enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : v	vno - v	ector	numbe	er of in	terrup	t to en	able								

Table 5.3.2.5.11-10: Register IRQ_VDISABLE (0x3A) IRQ vector disable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : v	/no - v	rector	numbe	er of in	terrupt	to dis	able								

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W
Bit Description	4:0 : v softwa vector	/max - are wr r numl	· need ites cu per) ca	ed for Irrent v an nes	nesteo /ector t	d interi numbe	rupt su er to th	ipport nis reg	ister, s	so only	r interr	upts w	vith hig	lher pr	iority (lower

Table 5.3.2.5.11-11: Register IRQ_VMAX (0x3C) IRQ max vector register

Table 5.3.2.5.11-12: Register IRQ_VNO (0x3E) IRQ vector number register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	4:0 : v read: when write:	/no - vector no IR vecto	r numt Q is pe r numt	per of e ending	enable the fii	d peno rst unu pt eve	ding in Ised IF nt to c	terrup RQ nur lear	t with I mber is	highes s retur	t prior ned.	ity (sm	allest	vector	numb	er).

5.3.2.5.12 Capture Compare Timer Module (CCTIMER)

This module includes two 16 bit timers which can also be used to measure incoming signal waveforms.

Features

- 8 bit counter clock pre-scaler
- 2 x 16 bit timer / measurement / event counter
 - Waveform measurement : counter A measures period, counter B measures signal high time
 - Waveform measurement : counter A measures signal low time, counter B measures signal high time
 - Period meas / timer : counter A measures period, counter B is used as timer
 - Timer : both counters are used as timers
 - PWM generate : counter A defines period, compare value B defines pulse width
 - Event counting : counter A defines period, counter B counts measurement signal events
- Measurement counter "start" and "stop" signal edges can be configured
- Timer "once" and "loop" modes are possible
- Counter clock source selection
- Up to 256*2^16 clock cycle measurement / timer duration
- Power saving pre-scaled architecture
- PWM generator
- Event counting + threshold IRQ
- Windowed event counting

PRELIMINARY INFORMATION - Jan 18, 2017

Figure 5.3.2.5.12-1: Structure

Table 5.3.2.5.12-1: Registers

Register Name	Address	Description
PRESCALER	0x00	pre-scaler register
CONTROL	0x02	control register
CONFIG_A	0x04	config A register
CONFIG_B	0x06	config B register
CAPCMP_A	0x08	capture compare A register
CAPCMP_B	0x0A	capture compare B register
COUNTER_A	0x0C	counter A register
COUNTER_B	0x0E	counter B register
PRESEL_A	0x10	pre_select A register
PRESEL_B	0x12	pre_select B register
IRQ_STATUS	0x30	IRQ status register
IRQ_MASK	0x34	IRQ mask register
IRQ_VENABLE	0x38	IRQ vector enable register
IRQ_VDISABLE	0x3A	IRQ vector disable register
IRQ_VMAX	0x3C	IRQ max vector register
IRQ_VNO	0x3E	IRQ vector number register

Table 5.3.2.5.12-2: Register PRESCALER (0x00) pre-scaler register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7:0 : v	al - co	ounter	clock	pre-sc	ale va	lue (cl	ock pr	ediv b	y val+'	1)					

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	W	W	W	R/W	R/W
Bit Description	4 : res 3 : res 2 : res 1 : en 0 : en	start_p start_b start_a able_b able_a) - rest) - rest) - rest) - ena a - ena	art pre art cou art cou Ible su	e-scale unter E unter A b-time b-time	e count 3 A er B er A	ter									

Table 5.3.2.5.12-3: Register CONTROL (0x02) control register

Table 5.3.2.5.12-4: Register CONFIG_A (0x04) config A register

	MSB															LSB
Content	-	-	-	-	-	-	9:8		-	6:5		4:2			1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	9:8 : n 0: cor 1: like 2: like 3: cap 6:5 : 0 0 : oth 1 : ME 2 : ME 3 : sys 4:2 : n 0: cou 1: oth 2: ME 3: ME 4: sys 1:0 : 0 0: pre 1: ME 2: ME 3: sys	mode npare 0, bu 0, bu oture n capture ner cou EAS si EAS si estart unter e er cou AS si castem	- mode mode t "enal t coun node (e_sel - unter c gnal n gnal n	e selec (CAPC oble" wi ter will CAPC captu compa ositive egative see pr nter cl em clc ositive egative see pr	etion CMP is be re- MP is re eve e edge e edge	s used leared started used t ent selent sect PR selec own c t selec own c t urce s (up) (up) ct PRE	as co at cor d at co o capt ection ESEL_ selection	mpare mpare mpare (captu (captu _*.cap re eve _*.resta	e value event revent ure mo ture_s nt (loo art_sel) (once (loop de onl el) op)) y !)					

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION – Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	9:8		-	6:5		4:2			1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	9:8 : r 0: cor 1: like 2: like 3: cap 6:5 : c 0 : oth 1 : ME 2 : ME 3 : sys 4:2 : r 0: cou 1: oth 2: ME 3: ME 4: sys 1:0 : c 0: pre 1: ME 2: ME 3: sys	mode npare 0, bu oture n capture action EAS si EAS si estant unter e er cou AS si chem	- mode mode t "enal t coun node (e_sel - gnal p gnal n gnal n	e selec (CAPC oble" wi ter will CAPC captu compar ositive egative see pro- sitive egative see pro- nter clo positive egative see pro- sitive egative see pro-	tion CMP is I be cl be res MP is re eve e edge e edge e edge e edge e event ctive / e ever edge e edge e edge	s used eared startec used t ent selent selec own c t ct PRE urce s (up) (up) ct PRE	as co at cor d at co o capt ection ESEL_ compa	mpare npare mpare (captu (captu _*.cap re eve _*.resta	e value event e event ure mo ture_s nt (loo art_sel sel)	e) (once t (loop ode onl el) op))) y !)					

Table 5.3.2.5.12-5: Register CONFIG_B (0x06) config B register

Table 5.3.2.5.12-6: Register CAPCMP_A (0x08) capture compare A register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	val - d	compa	re valu	le OR	captu	red va	lue								

Table 5.3.2.5.12-7: Register **CAPCMP_B** (0x0A) capture compare B register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	: val - 0	compa	ire valı	ue OR	captu	red va	lue								

Table 5.3.2.5.12-8: Register COUNTER_A (0x0C) counter A register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 :	val - 0	curren	t coun	ter val	ue										

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.
PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 :	5:0 : val - current counter value														

Table 5.3.2.5.12-9: Register COUNTER_B (0x0E) counter B register

Table 5.3.2.5.12-10: Register PRESEL_A (0x10) pre_select A register

	MSB															LSB
Content	-	-	-	-	11:8				7:4				3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	11:8 : 0: HA 1: inc 2: inc 3: SC 8: SY 9: SY 10: S 11: S 12: S 11: S 12: S 7:4 : 1 0: HA 1: inc 2: inc 3: SC 8: SY 9: SY 10: S 11: S 12: S 13: S 12: S 11: S 12: S 13: S 12:	captu LL dec remen I baud NC U NC V YNC V	re_sel coder (t deco t deco clock posed v posed v posed v nege coder (t deco clock v posed v posed v nege coder (t deco clock v posed v pos	- pre- 60° trig der ste der ze (up) ge ge dge dge dge dge dge dge	select gger p pp puls ro ma lect a gger p pop puls ro ma ro ma	a syst ulses ses rker ulses ses rker tem sig ulses ses rker	em sig n signal as	al as r	estart	ure trig	ger					

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION – Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	11:8				7:4				3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	11:8 : 0: HA 1: incl 2: incl 3: SC 8: SY 9: SY 10: S' 12: S' 13: S' 7:4 : r 0: HA 1: incl 2: incl 3: SC 8: SY 9: SY 10: S' 11: S' 12: S' 13: S' 7:4 : r 0: HA 1: incl 2: incl 3: SC 0: HA 1: incl 2: incl 3: SC 0: HA 1: incl 2: incl 3: SC 0: HA 1: incl 2: incl 3: SC 11: S' 12: S' 13: S' 11: S' 12: S' 13: S' 11: S' 13: S' 11: S' 13: S' 11: S' 11: S' 13: S' 11: S'	captu LL dec remen remen I baud NC U YNC V YNC V	re_sel coder (t deco t deco clock posed V posed V nege sel - coder (t deco t deco clock V posed V nege coder (t deco t deco l clock V posed V nege V nege V nege Coder (t deco t deco clock V posed V posed V nege V nege V nege V nege V nege Coder (t deco t deco t deco l clock V posed V posed V nege V nege	- pre- 50° trig der ste der ze (up) ge ge dge dge dge dge dge dge	a sys gger p ep pul: ro ma a sys gger p ep pul: ro ma	a syst ulses ses rker ulses ses rker tem sig ulses ses rker	n signa	al as re	estart	trigger	ger					

Table 5.3.2.5.12-11: Register **PRESEL_B** (0x12) pre_select B register

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	8 : co 7 : co 6 : ca 5 : ca 4 : res 3 : res 2 : ov 1 : ov 0 : res	mpare mpare pture_ pture_ start_b start_a erflow start_p	e_b (ev e_a (ev b (ever a (ever a (ever b (ev _a (ev a (ev o (ever	vent) - vent) - c ent) - c ent) - co nt) - co ent) - c ent) - c ent) - o	counte counter ounter unter unter counte counte e-scale	er 1 co er 0 co 1 cap 0 cap 1 resta 0 resta er 1 ov er 0 ov er rest	empare ompare oture e oture e art eve art eve erflow art eve	e even e even vent vent nt nt (coun (coun ent	t t ter typ ter typ	e is si e is si	gned i gned i	nt) nt)				

Table 5.3.2.5.12-12: Register IRQ_STATUS (0x30) IRQ status register

Table 5.3.2.5.12-13: Register IRQ_MASK (0x34) IRQ mask register

	MSB															LSB
Content	-	-	-	-	-	-	-	8:0								
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R/W								
Bit Description	8:0 : r 1: ena 0: disa	nask - abled abled	enab	le irq s	ource											

Table 5.3.2.5.12-14: Register IRQ_VENABLE (0x38) IRQ vector enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R R															
Bit Description	Bit Description 3:0 : vno - vector number of interrupt to enable															

Table 5.3.2.5.12-15: Register **IRQ_VDISABLE** (0x3A) IRQ vector disable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : v	:0 : vno - vector number of interrupt to disable														

Table 5.3.2.5.12-16: Register IRQ_VMAX (0x3C) IRQ max vector register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : v softwa vecto	/max - are wr r numt	need ites cu per) ca	ed for Irrent v an nest	nesteo vector	l interr numbe	rupt su er to th	ipport nis regi	ster, s	so only	interr	upts w	rith hig	her pr	iority (lower

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : v read: when write:	R R R R R R R R R R R/W R/W R/W R/W 3:0 : vno - read: vector number of enabled pending interrupt with highest priority (smallest vector number). when no IRQ is pending the first unused IRQ number is returned. write: vector number of interrupt event to clear														

Table 5.3.2.5.12-17: Register IRQ_VNO (0x3E) IRQ vector number register

5.3.2.5.13 ADC Control Module (ADC_CTRL)

Figure 5.3.2.5.13-1: SAR ADC Control Operating Environment

The saradc_ctrl module controls the SAR ADC and its associated analog input multiplexer. The mapping of multiplexer channels to the channel number ch_no and the configuration used in the module is as follows:

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

Table 5.3.2.5.13-1:	ADC	Channels
---------------------	-----	----------

ch_no	ADC channel	comment
30	 when CFG.mux_sel = 0 IO port A[3:0] when CFG.mux_sel = 1 IO port A[3:0] selections will be translated to MUX control values. CFG.ext_sel selects the analog input IO pa[0] select -> MUX1 = 0, MUX0 = 0 pa[1] select -> MUX1 = 0, MUX0 = 1 pa[2] select -> MUX1 = 1, MUX0 = 0 pa[3] select -> MUX1 = 1, MUX0 = 1 	gpio pins of die
74	IO port A[7:4]	gpio pins of die
158	IO port B[7:0]	gpio pins of die
2316	IO port C[7:0]	gpio pins of die
24	temperature	system monitoring
2527	ADC input undefined	no channel selected
28	select channel set in register AUTOCHANNEL.auto_ch_u	see register below
29	select channel set in register AUTOCHANNEL.auto_ch_v	see register below
30	select channel set in register AUTOCHANNEL.auto_ch_w	see register below
31	keep previous channel	

The measurements can be synchronized either to the commutation phase "base_phase" of the prePWM module or to the pwm signals of the PWMN module. For the pwm signal either the phase of the pwm period "pwm_phase" or the start of the dead times signalled by "dead_time_evt" is used for synchronization.

Functional Description

The ADC is normally used to measure at least three to four sources per PWM period:

- motor voltage for back emf measurements, synchronized to PWM period
- motor center point voltage This voltage must be measured just before and just after a switching event of a specific phase. Subsequent PWM periods use different switching patterns and thus measurement parameters. Up to 8 triggers per PWM period are required.
- leg sum current measurement, synchronized to PWM period This must be updated continuously for overload protection and torque control
- multiplexed general purpose measurements, not synchronized These values are to many to be converted within a single PWM period. Thus a scheduling is necessary.

Thus a flexible ADC scheduling scheme is required which allows to set the configuration for each ADC measurement independently. To keep the CPU load acceptable multiple measurements have to be configured in advance. To keep the gate count for the required number of configurations at an acceptable level the measurement configuration and the resulting samples reside in global memory.

The sequence and type of ADC measurements is controlled by a list of measurement configurations in memory. The start address "sadr" of this list is supplied by software through the register SADR_NEW. Once a SADR_NEW becomes available the processing of the list starts.

Within a list every list item (measurement configuration) specifies the trigger of the measurement, the ADC channel, the number of samples to sum and the number of sums to write to memory. Each sum is written atomic as a 16 bit word, so evaluation of partially completed lists is feasible. The next list item is already pre-fetched while the previous is executing, making jitter free reaction to triggers feasible.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

Execution of a list stops when the END command has been reached or when a corresponding command is written to the command (CMD) register.

Format of the list for N+1 entries:

Table 5.3.2.5.13-2:	Measurement	Configuration
---------------------	-------------	---------------

SADR+	bits	name	description
0x00 + N*0x6	15:0	target_adr	0x*0: Use target_adr. Memory[target_adr(15:0)]=Sum; 0x*01:Set and use TADR. (adr will only be set if no_sum > 0) TADR = target_adr(15:2) & 00 Memory[TADR]=Sum; TADR=TADR+2 0x*11:Use TADR. Memory[TADR]=Sum; TADR=TADR+2
0x02 + N*0x6	3:0	no_sample	015 number of samples sum up no_sample+1 samples, i.e. 116 samples can be summed
0x02 + N*0x6	8:4	no_sum	number of sums 0: do not perform any sampling, only set multiplexer when trigger occurs 131 number of sums to write to memory
0x02 + N*0x6	13:9	ch_no	031 channel number to set if (CFG_SAR_TIMING.mux_phase=0) before conversion of the this sample sequence f (CFG_SAR_TIMING.mux_phase>4) after conversion of the last sample of this sample sequence for the next sample sequence
0x02 + N*0x6	14	trigger_type_ex t	Trigger type extension see trigger for details
0x02 + N*0x6	15	trigger_type	see trigger
0x04 + N*0x6	15:0	trigger	Sample Sequence Starts - for trigger type=0 and trigger_type_ext=0: when pwm_phase matches trigger
0x04 + N*0x6	15:0	trigger	- for trigger type=0 and trigger_type_ext=1: when 0x <ext>00 immediately -> The ADC starts sampling immediately. The min- imal sampling phase is extended by ext number of adc clock/2 cycles.</ext>

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

SADR+	bits	name	description
0x04 + N*0x6	15:0	trigger	 for trigger type=1 and trigger is 0x00000x03FF: when base_phase matches trigger 0x040004FF: when any of the dead_time_evt[7:0] occurs and the corresponding bit [7:0] is set and DEAD_TIME_WAIT0 clock cycles have passed after the dead time event 0x140014FF: when any of the dead_time_evt[7:0] occurs and the corresponding bit [7:0] is set and DEAD_TIME_WAIT1 clock cycles have passed after the dead time event 0x240024FF: when any of the dead_time_evt[7:0] occurs and the corresponding bit [7:0] is set and DEAD_TIME_WAIT1 clock cycles have passed after the dead time event 0x240024FF: when any of the dead_time_evt[7:0] occurs and the corresponding bit [7:0] is set and DEAD_TIME_WAIT2 clock cycles have passed after the dead time event 0x0500057F: when edge counter >= corresponding bits[2:0] and edge counter <= corresponding bits[6:4] and DEAD_TIME_WAIT0 clock cycles have passed after the dead time event, when bit[3]=1 set autochannel (see register AUTOCHANNEL) 0x1500157F: when edge counter >= corresponding bits[2:0] and edge counter <= corresponding bits[6:4] and DEAD_TIME_WAIT1 clock cycles have passed after the dead time event, when bit[3]=1 set autochannel (see register AUTOCHANNEL) 0x2500257F: when edge counter >= corresponding bits[2:0] and edge counter <= corresponding bits[6:4] and DEAD_TIME_WAIT2 clock cycles have passed after the dead time event, when bit[3]=1 set autochannel (see register AUTOCHANNEL) 0x2500257F: when edge counter >= corresponding bits[2:0] and edge counter <= corresponding bits[6:4] and DEAD_TIME_WAIT2 clock cycles have passed after the dead time event, when bit[3]=1 set autochannel (see register AUTOCHANNEL) 0xFFC0: immediate sampling The minimal sampling phase is extended by CFG_SAR_TIMING.mux_sampling_extension number of adc clock/2 cycles.

PRELIMINARY INFORMATION - Jan 18, 2017

 Ingger - Ior trigger type=1 and 1 Special functions (do no modify mux): 0xFFE0 "CMP" Asser when the following co last_sum <= target_al 0xFFE1 " IRQ_STA' 0xFFE3 " IRQ_STA' 0xFFE4 " IRQ_STA' 0xFFE6 " IRQ_STA' 0xFFE6 " IRQ_STA' 0xFFE7 " IRQ_STA' 0xFFE7 " IRQ_STA' 0xFFE7 " IRQ_STA' 0xFFE7 " IRQ_STA' 0xFFE9 " IRQ_STA'' 0xFFF0 "WRITE_BUS AdrBit[15]=0 0xFFF1 "CFG_WRITI 0xFFF1 "CFG_WRITI 0xFFF2 "SVNC_OUT SYNC_OUT_CFG) 0xFFF3 "WAIT" wait f 0xFFF4 "ST_BP" stor 0xFFF6 LOOP UNTIL target_adr[15:0]) 0xFFF8 LOOP UNTIL target_adr[15:0]) 0xFFF8 LOOP UNTIL target_adr[15:0]) 0xFFF8 "GOTO" targ 0xFFFB "GOTO" targ 0xFFFE "GOTO" targ 	trigger is trigger is twait for a trigger, not use ADC nor rt "out of range" irq IRQ_STATUS.oor0 pondition is violated: 0x02[14:0] <= tdr[15:0]. TUS.oor1 " " TUS.oor2 " " TUS.oor3 " " TUS.oor3 " " TUS.oor6 " " TUS.oor7 " " TUS.oor7 " " TUS.oor9 " " S" Store target_adr to 0x02[14:0] with TE" Store target_adr to CFG register for target_adr+2 clk cycles re base_phase in place of sum store TADR in place of sum store TADR in place of sum L (0x02[14:0] <=base_phase<= L NOT(0x02[14:0] <=base_phase<= tar- L (0x02[14:0] <=TADR<= L NOT(0x02[14:0] <=TADR<= get_adr when last_sum<=0x02[14:0] get_adr when not last_sum<=0x02[14:0] get_adr when TADR[14:0] = 0x02[14:0] if TO always to maleted (last list item)

Further functionality of saradc_ctrl

- Synchronisation output The module output sync_out can be used to synchronize external peripherals. Sync_out is asserted for SYNC_OUT_CFG.length clock cycles when the source specified in SYNC_OUT_CFG.src matches SYNC_OUT_TRIGGER.
- Debug outputs Mux_sel and a signal indicating the operation of the S/H stage can be multiplexed to digital outputs to facilitate software debugging.
- Edge Counter Within a PWM period the occurrence of the Dead Time Trigger signals are counted. Note: only the dead time trigger signals of UVW are considered (dead_time_trigger[5:0]). The edge counter counts from 0 to 6 each pwm period and will be reset to zero when PWM_PHASE == 0. ADC Sampling can be triggered after a specific amount of a dead time edges.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

Table	5.3.2.5	.13-3:	Registers
-------	---------	--------	-----------

Register Name	Address	Description
CFG	0x00	Configuration register. CFG can also be set/reset by special list command.
CFG_SAR_TIMING	0x02	Timing register
DEAD_TIME_DEL AY	0x04	Common Dead Time Delay
DEAD_TIME_WAIT 0	0x06	Dead time wait register
SYNC_OUT_CFG	0x08	sync out config register
SYNC_OUT_TRIG- GER	0x0A	sync out trigger register
CMD	0x0C	command register
WADR_MIN	0x0E	Memory write protection register (min)
WADR_MAX	0x10	Memory write protection register (max)
SADR_NEW	0x12	New List start address register
SADR_CURRENT	0x14	Start address of current list
L0_CURRENT	0x16	L0 current register
L1_CURRENT	0x18	L1 current register
L2_CURRENT	0x1A	L2 current register
ADR_NEXT	0x1C	next address register
SADR_DONE	0x1E	start address complete
STATE	0x20	state register
DEAD_TIME_WAIT 1	0x22	Dead time wait register
DEAD_TIME_WAIT 2	0x24	Dead time wait register
TADR	0x26	TADR content register
AUTOCHANNEL	0x28	AUTO Channel register
IRQ_STATUS	0x70	IRQ status register
IRQ_MASK	0x74	IRQ mask register
IRQ_VENABLE	0x78	IRQ vector enable register
IRQ_VDISABLE	0x7A	IRQ vector disable register
IRQ_VMAX	0x7C	IRQ max vector register
IRQ_VNO	0x7E	IRQ vector number register

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION – Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	10	9	8:4					3	2:1		0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	10 : s 0: fun 1: who bits[13 [12]-> [13]-> [14]-> [15]-> Note: the sa Note: 9 : En 0: log 1: Wh the ne 0) Note: 8:4 : 6 select used 3 : 1: 2:1 : (1: ado 3: ado 0 : 0: 1: ado	tore_d ction c en trig 5:12] c U cha V cha V cha V cha Only c ame tir only a able r ic disa aen du ext cor When ext_set if mux c reset adc is c is po	It_evt disable ger_ty of the / annel c annel c annel c annel c one of me the applica nissed ubled ring pr mmano no_sel il IO cha _reset is al mul _reset is perm powe wered	ed pe=1 ADC s dead ti dead ti dead ti dead ti dead ti dead ti ble wh dead docess d will b um > 1 um > 1 unnel to after e anentl anentl red do up	and tri ample me ev ime ev ime ev 4 bits st bit v ing of time the ing of o use a l ch_ne er is us every s y not a y asse wn	gger = d valu- ent ca ent ca vent ca ent ca can be vill be o_sam rigger dead t ped ar will or as ext o is in sed. Se sample tred (o	a 0x400 e luses t luses t auses t uses t e set a set. ple' = logic ime tri nd 0xfi nly be muxee the ra ee mu e sequ ed (cor conver	0 0x2 he trig he trig the trig he trig t the s 0 gger a gger a fff will l writter d input nge 0. ltiplexe ence sion n	250F s ger ger ger ame ti a dead be writ a once .3. er table on pos ot pos	me, if time t tten to . A wri e. sible)(sible)	igger two or the m te erro	of the emory or IRQ	g dead trigge next c (only will be	d_time r even when 9 gene	e_even ts occi no_su rated	t to ur at m >

Table 5.3.2.5.13-4: Register CFG (0x00) Configuration register.CFG can also be set/reset by special list command.

Table 5.3.2.5.13-5: Register CFG_SAR_TIMING (0x02) Timing register

	MSB															LSB
Content	15:8								7:3					2:0		
Reset value	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : 0255 Note: 7:3 : r Clock 0 swit 528 Note: Note: switch 2:0 : a 1MA Note: MHz J	samp only u nux_p edge ches t switch Value Clock ning ne adc_cl X Per Adc c	bling_e bling p used fo bhase numb the mu tes the est 1.4 c edge eeds 3 k_div iod of clk mu the	extensi eriod i or imm er whe iliplexe mulip must s cour s sys_c adc cll st not	on s exter rediate en the er for c lexer f not be nting fr clk cyc k is 2* exceed	nded I samp multip current or ney used om 1 t les inc adc_cl d 16M	by sam bling lexer i samp t sam to 28, s cluding k_div Hz, e.	npling_ s char ling co pling c sampli break clk cyc g. with	_exten nged. ommar comma	sion a nd riod er re mak m clk :	dc clk/ nds wit e = 48M	'2 cycl h edge Hz set	es. e 5 (ris adc_c	sing ec	lge), № r=2 ->	1ux 12

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W							
Bit Description	7:0 : dead_time_delay Common delay of all dead time triggers in sys_clk cycles. Delay in sys_clk cycles = dead_time_delay + 1															

Table 5.3.2.5.13-6: Register **DEAD_TIME_DELAY** (0x04) Common Dead Time Delay

Table 5.3.2.5.13-7: Register **DEAD_TIME_WAIT0** (0x06) Dead time wait register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7:0 : o numb	dead_t er of c	time_v lock c	vait (co ycles b	onfigur oetwee	ation (en a de	D) ead tin	ne eve	nt and	the s	amplir	g	1	1		

Table 5.3.2.5.13-8: Register SYNC_OUT_CFG (0x08) sync out config register

	MSB															LSB
Content						10:9		8	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	10:9 : 0: bas 1: pwr 2: list 3: disa 8 : po 7:0 : l	src - se_pha m_pha comm abled I - pola ength	ase ase land (s arity of - leng	see ab sync_ th of th	ove) _out w ne syn	hen as c_out	sserteo pulse i	d in cloc	k cycle	es						

Table 5.3.2.5.13-9: Register SYNC_OUT_TRIGGER (0x0A) sync out trigger register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : sync_ SYNC Note:	sync_ out is _OU1 SYNC	_out_tr asserf [_CFC [_OU1	igger ed for Ssrc m signa	- SYNC natche Il has t	C_OUT s SYN to be r	⁻ _CFG C_OU nuxed	i.lengt IT_TR to IO	h clocl IGGEI	< cycl€ ⋜	es whe	n the s	source	e speci	fied in	

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	W	W
Bit Description	1 : se 1: terr next. 0 : list 1: terr Note: IRQ_3	q_skip minate s_skip minate A skip STATU) (skip) (skip) list co JS.sao	curre curre ommai dr_don	nt list i nt list o nd will ie_nen	tem (s of sam not fe npty a	ample ple se ed sao nd list	e seque equenc dr_done _done	ence c es and e regis _evt	or waiti d conti ster ar	ng for nue w nd will	trigge ith the not se	r) and next t	contin	ue wit	h the

Table 5.3.2.5.13-10: Register CMD (0x0C) command register

Table 5.3.2.5.13-11: Register WADR_MIN (0x0E) Memory write protection register (min)

	MSB															LSB
Content	15:5											-	-	-	-	-
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R
Bit Description	15:5 : Memo < WA	wadr_ bry wri DR_M	_min te prot IAX	ection	. The	modul	e only	perfor	ms wr	ites wł	nen W	ADR_	MIN <	= targe	et_adc	lress

Table 5.3.2.5.13-12: Register **WADR_MAX** (0x10) Memory write protection register (max)

	MSB															LSB
Content	15:5											-	-	-	-	-
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R
Bit Description	15:5 : Memo < WA	wadr_ ory wri DR_M	_max te prot IAX	ection	. The	modul	e only	perfor	ms wr	ites wl	nen W	ADR_	MIN <	= targe	et_adc	lress

Table 5.3.2.5.13-13: Register **SADR_NEW** (0x12) New List start address register

	MSB															LSB
Content	15:1															0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Bit Description	15:1 : new s 0 : list same	start_ tart ac t_skip as Cl	_adr ddress MD.list	s. Exec :_skip	cution	starts	once t	he cur	rent lis	st has	compl	eted o	r is ski	ipped.		

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 : start a	: sadr_ addres	_curre	nt ne list d	curren	tly exe	cuted									

Table 5.3.2.5.13-14: Register SADR_CURRENT (0x14) Start address of current list

Table 5.3.2.5.13-15: Register L0_CURRENT (0x16) L0 current register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 : value	targe of the	t_adr curre	ntly ac	tive lis	t item		•					•			

Table 5.3.2.5.13-16: Register L1_CURRENT (0x18) L1 current register

	MSB															LSB
Content	15	14	13:9					8:4					3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15 : tr 14 : tr 13:9 : 8:4 : r 3:0 : v	igger_ igger_ ch_no no_sur value c	type - type_e - valu n - val of the c	value ext - va ue of t ue of t curren	of the alue of he cur the cur tly acti	currei f the c rently rrently ive list	ntly ac urrentl active active item	tive lis y activ list ite list ite	t item ve list i m em	tem						

Table 5.3.2.5.13-17: Register L2_CURRENT (0x1A) L2 current register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 :	trigge	er - val	ue of t	he cur	rently	active	list ite	m							

Table 5.3.2.5.13-18: Register ADR_NEXT (0x1C) next address register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 last a but th	adr_r ddress e last	next - s read pre- fe	from S etched	SRAM. addre	This i ss	is not t	he ad	dress	of the	curren	tly act	ive sa	mple s	equen	ICE

PRELIMINARY INFORMATION - Jan 18, 2017

Table 5.3.2.5.13-19: Register SADR_DONE (0x1	E) start address complete
--	---------------------------

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 start a addre Note: IRQ_	: sadr_ addres ss will A skip STATL	_done s of th clear b list co JS.sac	e list v an ass ommai dr_don	which I serted nd will ie_nen	ast ex IRQ_3 not fe npty	ecuteo STATL ed sao	d a "lis [.] JS.sad dr_don	t comp r_don e regis	oleted" e_nem ster ar	or "go npty. nd will	oto" lis not se	t item. t	Read	ing thi	5

Table 5.3.2.5.13-20: Register STATE (0x20) state register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	2:0		
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	2:0 : s 0x0: id 0x1: v 0x2: s 0x3: e 0x4: v 0x5: f	state dle vaiting ampli execut vaiting inish s	j_for_t ng ing_ot j_for_r amplii	rigger her_co next_lis	ommar st_iten	nd 1										

Table 5.3.2.5.13-21: Register **DEAD_TIME_WAIT1** (0x22) Dead time wait register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0				-	-	-	-
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7:0 : o numb	dead_i er of c	time_v clock c	vait (co ycles l	onfigur oetwee	ation en a de	1) ead tin	ne eve	nt and	the s	amplir	g			•	

Table 5.3.2.5.13-22: Register **DEAD_TIME_WAIT2** (0x24) Dead time wait register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W							
Bit Description	7:0 : o numb	:0 : dead_time_wait (configuration 2) umber of clock cycles between a dead time event and the sampling														

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 : Conte above	tadr ent of t	he TA	DR re	gister,	TADR	l can b	e set ı	using s	specia	l comr	nand t	able s	yntax	descril	oed

Table 5.3.2.5.13-23: Register TADR (0x26) TADR content register

Table 5.3.2.5.13-24: Register AUTOCHANNEL (0x28) AUTO Channel register

	MSB															LSB
Content	-	14:1 0					9:5					4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	14:10 When Note: 9:5 : a When Note: Note: Note: Note: Note:	i trigge only u also u auto_co trigge only u also u auto_co trigge only u also u	b_ch_v er sour ised fc ised w ch_v er sour ised fc ised w ch_u er sour ised fc ised w	v ce edge hen ch ce edge br edge hen ch ce edge hen ch	ge was coun nannel ge was coun nannel ge was coun nannel	W us ter trig 30 is V us ter trig 29 is U us ter trig 28 is	e auto gered select gered select select e auto gered select	o_ch_v event ed (se _ch_v event ed (se _ch_u event ed (se	v as ne s with e char as ne s with e char as ne s with e char	ext cha autocl nel lis autocl nel lis xt cha autocl nel lis	annel hannel hannel hannel tabov nnel hannel	l bit se re) l bit se re) l bit se re)	t t			

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W
Bit Description	15 : 0 14 : 0 13 : 0 12 : 0 11 : 0 9 : 00 8 : 00 7 : 00 6 : 00 5 : sa 4 : sa 3 : list 2 : su 1 : dr 1 : a s Cause no_su 0 : dr 1 : the asser sion).	or9 - 1 or8 - 1 or7 - 1 or6 - 1 or5 - 1 or4 - 1 r3 - 1: r2 - 1: r1 - 1: r0 - 1: dr_nev dr_done m_wri na_wri um wa e: a) ta um>1 na_rea next l ted wh	I: sum I: sum I: sum I: sum I: sum Sum C sum C s	out of out of out of out of out of out of r out of r out of r out of r out of r out of r out of r 1 - 1: S mpty - 1: list vt - 1: - written ddress	range range range range ange ange ange ange ange ange ange	when when when when when when when when	comp comp comp comp compa comp	ared v ared v ared v ared v ared v ared v ared v red wi red wi red wi contain mory associa e, b) w	vith CN vith CN vith CN vith CN vith CM th	MP con MP con MP con MP con MP com P com P com P com P com Start a sw con ddress o overf us san functic	nman nman nman nman mand mand mand ddress npleted has b low c) nple so	d d d d d s. d start misse equent had a	addre kipped d dead ce con t least	ss. d time npleter	triggel d. Only dc cor	r / iver-

Table 5.3.2.5.13-25: Register IRQ_STATUS (0x70) IRQ status register

Table 5.3.2.5.13-26: Register IRQ_MASK (0x74) IRQ mask register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : 1: ena 0: disa	mask abled abled	- ena	ble irq	sourc	e										

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : v	no - v	ector I	numbe	er of in	terrupt	to en	able								

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : v	: vno - vector number of interrupt to disable														

Table 5.3.2.5.13-28: Register IRQ_VDISABLE (0x7A) IRQ vector disable register

Table 5.3.2.5.13-29: Register IRQ_VMAX (0x7C) IRQ max vector register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W
Bit Description	4:0 : v softwa vector	/max - are wr r numl	need ites cu per) ca	ed for Irrent v an nes	nesteo /ector t	d interr numbe	rupt su er to th	ipport nis reg	ister, s	so only	interr	upts w	vith hig	her pr	iority (lower

Table 5.3.2.5.13-30: Register **IRQ_VNO** (0x7E) IRQ vector number register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	4:0				
Reset value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W
Bit Description	4:0 : v read: when write:	vno - vector no irq vecto	r numt is per r numl	per of ending t	enable he firs interru	ed pen t unus pt eve	ding in ed irq ent to c	terrup numb lear	t with er is re	highes eturned	st prior d.	ity (sm	allest	vector	numb	ver).

5.3.2.5.14 PRE PWM Module (PRE_PWM)

5.3.2.5.14.1 Description

The PRE_PWM module can be used to automatically generate PWM amplitude waveforms by linear interpolation of table values fetched by the module using a direct memory access (DMA).

The calculated waveform amplitude and "on" values are directly supplied to the PWM module which significantly reduces the CPU load.

5.3.2.5.14.2 Features

- base phase counter which represents current electrical rotation angle
 - angular motor speed set register (INC)
- 3 interpolation channels to calculate 3 PWM channel reload values
 - DMA based interpolation table value read
- PWM channel amplitude value offset, scale and limit logic
- external sync signals (e.g. HALL signals) evaluation logic
- vector based interrupt handling

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

Figure 5.3.2.5.14.3-1: Module block diagram

5.3.2.5.14.4 Abbreviations

- HS : PWM channel high-side signal
- LS : PWM channel low-side signal
- U, V, W : PRE_PWM interpolation channels (correspond to PWM channels 0 .. 2)
- DMA : direct memory access

PRELIMINARY INFORMATION - Jan 18, 2017

5.3.2.5.14.5 Module parts The PRE PWM module consists of five main parts:

- base phase counter
- 3 interpolation channels
- scale and limit logic
- sync logic
- module interrupt logic

The base phase counter generates the interpolation calculation time base using a modulo accumulator. It's increment value (INC register) can be used to set the calculation speed which is directly proportional to the electrical rotation speed. When the modulo accumulator overflows, a base phase increment event is generated which triggers the interpolation channels slope accumulators to be incremented by their signed slope values.

The interpolation channels generate a piecewise linear waveform based on a combination of start value (slope_acc), increment value (slope) and duration value normally fetched by DMA from a table to reload registers. Each time a base phase increment event occurs, the signed slope value is added to the slope accumulator and duration is decremented by 1. When the result of the duration decrement is zero, the reload register content is copied to the slope_acc, slope and duration working registers and the reload registers are refilled by DMA with the next table entry values. The DMA needs at least 44 clock cycles to fetch a complete table configuration from SRAM, which restricts the duration value: duration value ≥ 44 / (clock cycles between two successive base phase increment events). When the table is located in FLASH memory, 68 clock cycles are needed.

The scale and limit logic adapts the three interpolation channel slope accumulator values to valid PWM reload values by offsets, multiplication and shift right operations. This is done in a time multiplex manner and a handshake with the PWM module is implemented which restricts the minimum distance of two successive base phase increment events to 5 clock cycles. For this reason, the INC register has not to be set to values larger than 52428.

The sync logic can be used to evaluate external sync signals.

The module interrupt logic evaluates some sync logic events, the reload event and reload error event of all interpolation channels and supplies a module interrupt signal to the system main vector interrupt controller.

5.3.2.5.14.6 Common registers

- CFG register:
 - configuration to control PRE_PWM module behavior
- CMD register:
 - software commands register

Table	5.3.2	5.14.6	-1:	Common	registers
-------	-------	--------	-----	--------	-----------

Register Name	Address	Description
CFG	0x00	config register
CMD	0x06	command register

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

		-			,											
	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	5	4	3:2		1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	5 : sw 0 : int In this uses. modu 1 : int In this data r 4 : sw suppl 0 : no 1 : sw 3:2 : o x_HW 00 : b 01 : H 10 : H 10 : H 11 : b Note: suppl use_o 1 : rel 0 : no 1 : sw 3:2 : o x_HW 00 : b 01 : H 10 : H 11 : b Note: suppl 0 : rel 1 : rel 0 : no 1 : sw 3:2 : o x_HW 00 : b 00 : b 01 : H 10 : H 11 : b Note: suppl 0 : rel 1 : rel 0 : no 1 : sw 3:2 : o x_HW 00 : b 00 : b 00 : c 00 : b 00 : c 00 :	<pre>vitch_g erpola case lt mea le relo erpola case lt mea le relo erpola case vap_uv ied to signa vap sig on_sta /.use_ oth HS IS off, IS on, oth HS ied to cfg_on na_en load re c_en - CC ren C add</pre>	I swap and the Pl ans the and dat the Pl and the rad dat the Pl rad dat the Pl rad dat rad dat the Pl rad dat rad rad rad dat rad rad rad rad rad rad rad rad rad rad	interp nannel RE_P\ at the l ta usages nannel RE_P\ up U au modul n" sign n is se LS off LS on e_cfg_ modul polatic DMA polatic DMA registe	olation calcu WM m PRE_f ge rate calcu WM re disable on is s e ! For on cha disable enable r incre nged very c	al value set, ch nnels n ed ed ment o lock cy	eload eload alue ca ation c eld dire d to P' e) anging opera reload enable	gger so basec ates m value basec alculat channe ection) WM m	elect I on ba ore P\ calcula I on P\ ion da el reloa iodule)	ase pho WM re ation c WM re ta rate ad sigr state	ase ind load vi lata ra load e is giv nals (a when ately c je this able	creme alues te is h vents en by mplitu interp hange value	nt eve than th igher t the PV de and olation	nts (ty he PW han th VM mo d "on" d "on" n chann reload vhen c	pical v M moc e PWI odule r signals nel	alue) Jule VI reload s)

Table 5.3.2.5.14.6-2: Register CFG (0x00) config register

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	W	W	W	W	W	W	W	W
Bit Description	7 : uv ware 6 : w_ 5 : v_ 4 : u_ 3 : w_ 2 : v_ 1 : u_ 0 : bp	w_sca update dma - dma - reload reload s0 - 1	lle - 1 es slop 1 : trig 1 : trig 1 : trig 1 - 1 : g - 1 : g : gene	trigge oe acci gger in ger in ger in genera genera genera	er all in umulat terpolaterpolaterpola terpolate inte te inte te inte ync re	ation c ation c ation c ation c polati rpolati load e	ation o ue) channe hanne ion ch on cha on cha	el W D I V DN I U DN annel annel V	els slop MA re MA relo MA relo W relo V reloa U reloa	pe acc load bad bad ev ad eve ad eve	ent nt	tor sca	aling (e	e.g. in	case s	soft-

Table 5.3.2.5.14.6-3: Register CMD (0x06) command register

5.3.2.5.14.7 Base phase counter

The base phase counter consists of a fractional counter part:

- ACC register:
 - represents upper 16 bits of the 18 bit fractional accumulator
 - incremented by INC register value every clock cycle
- INC register:
 - has to be set according to angular motor speed
 - has to be set to a value which guaranties a minimum number of clock cycles between two successive base phase increment events
 - if table is located in SRAM : minimum number of clock cycles = 44
 - if table is located in FLASH : minimum number of clock cycles = 68
 - loaded from INC_SYNC register at sync reload event when INC_SYNC has been written since last sync reload event
- INC_SYNC register:
 - INC register reload value
- base phase increment event:
 - · generated at ACC overflow

and a base phase counter part:

- BASE_PHASE register:
 - represents current electrical angle
 - incremented at base phase increment event with modulo (BP_MAX+1)
 - supplied to ADC control module for electrical angle based ADC conversion
- BP_MAX register:
 - BASE_PHASE maximum value
 - BP_MAX+1 equals the number of base phase increment events per electrical rotation

Table 5.3.2.5.14.7-1	: Base	phase	counter
----------------------	--------	-------	---------

Register Name	Address	Description
BP_MAX	0x02	base phase max register

PRELIMINARY INFORMATION - Jan 18, 2017

Register Name	Address	Description
INC	0x08	increment register
ACC	0x0A	fractional counter register
BASE_PHASE	0x0C	current base phase register
INC_SYNC	0x1C	increment reload register

Table 5.3.2.5.14.7-2: Register ACC (0x0A) fractional counter register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : Note: regist	acc - The f er. Wh	upper ractior ten wr	16 bits al acc iting, tl	s of th umula ne bits	e 18 b tor is 0 anc	it fract 18 bit v 1 of t	ional a wide. (he 18	Dnly th	ulator ne upp cumula	er 16 l ator are	oits are e set te	e read o 0.	able u	sing th	nis

Table 5.3.2.5.14.7-3: Register INC (0x08) increment register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : Note: clock scalin	The r cycles	naxim betwe beha	nal acc um allo een tw vior.	owed i	ator ind nc vali cessive	creme ue is 5 e base	nt valu 52428 9 phase	to gua e incre	ranty a	a minir events	num d . This	istanc is nee	e of at ded fo	least or corre	5 ect

Table 5.3.2.5.14.7-4: Register INC_SYNC (0x1C) increment reload register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	inc - I	NC re	gister	reload	value										

Table 5.3.2.5.14.7-5: Register BASE_PHASE (0x0C) current base phase register

	MSB															LSB
Content	-	-	-	-	11:0											
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	11:0 :	base_	phase	e - curi	rent ba	ise ph	ase va	lue								

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	11:0											
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	11:0 : When value	bp_m base to "ov	phase phase	ase ph value " to 0.	ase m equal	iaximu Is bp_i	m (mo max, a	odulo) 1 base	value phase	e incre	ment e	event o	causes	base	phase	;

Table 5.3.2.5.14.7-6: Register BP_MAX (0x02) base phase max register

5.3.2.5.14.8 Interpolation channels

- in the following description, x is used as place holder in channel U, V or W register names
 - interpolation channel U corresponds to PWM channel 0
 - interpolation channel V corresponds to PWM channel 1 (if not swapped using CFG register)
 - interpolation channel W corresponds to PWM channel 2 (if not swapped using CFG register)
- linear interpolation register bitfields:
 - duration, slope, slope accumulator start value
- x_LW register:
 - contains part of the interpolation channel configuration
 - loaded from x_LW_RLD register at reload event
- x_LW_RLD register:
 - x_LW register reload value
 - loaded from memory by DMA at reload event, when DMA is enabled
- x_HW register:
 - · contains part of the interpolation channel configuration
 - loaded from x_HW_RLD register at reload event
- x_HW_RLD register:
 - x_HW register reload value
 - loaded from memory by DMA at reload event, when DMA is enabled
- duration counter
 - equals x_LW.duration
 - down counting at base phase increment event
- slope accumulator
 - equals x_HW.slope_acc
 - signed x_LW slope value is added to unsigned slope accumulator
 - Note: Please take care to not underflow slope accumulator below 0, because there is no saturation of "negative" values to 0 !
- reload event:
 - generated when duration counter < 2 at base phase increment event
 - is interrupt source
- reload error event:
 - generated at reload event when not all reload registers (of all interpolation channels) have been updated by DMA or written by software since previous reload event

PRELIMINARY INFORMATION - Jan 18, 2017

- is interrupt source
- ADDR BASE register:
 - common table base address (same for all channels)
- x_ADDR register:
 - interpolation channel DMA address offset
- DMA reload:
 - when CFG register DMA enable is set:
 - · triggered by reload event
 - loads x_LW_RLD and x_HW_RLD registers from memory address ADDR_BASE + x_ADDR
 - post increments x_ADDR by 4
 - if loaded duration value is 0:
 - x_ADDR is set to 0 and DMA loading is repeated
- interpolation table:
 - consists of 32 bit structure entries which contain DMA load values for x_LW_RLD and x_HW_RLD registers
 - · a table represents a complete electrical rotation
 - the same table is used for all three interpolation channels
 - a table entry defines an interpolation straight line with supporting point (starting point), slope and duration
 - the number of valid table entries should be a multiple of 6 to be able to start every 30 degrees with a table entry (e.g. number of entries = 6 * 10 = 60)
 - if the same duration value is used for all valid table entries, BP_MAX = duration value * number of table entries 1 (e.g. BP_MAX = 66 * 60 1 = 3959).
 - BP_MAX = 3959 results in a base phase angle accuracy of 360 degrees / 3960 = 0.09 degrees per base phase step.

bit number	field name	comment
31	on	x_HW_RLD.on DMA load value
30:16	slope_acc	x_HW_RLD.slope_acc DMA load value
		the interpolation accumulator (slope accumulator) defines the straight line supporting point (starting point)
15:9	slope	x_LW_RLD.slope DMA load value
		defines the straight line increase (increment value) between two successive base phase increment events
8:0	duration	x_LW_RLD.duration DMA load value
		defines the number of interpolation straight line slope steps before next table entry has to be used
		Note: A value of 0 marks the end of the table.

Table 5.3.2.5.14.8-1: Interpolation table entry

- an interpolation table may be defined using the following steps:
 - for each table entry do the following:
 - 1. slope value [n] = round((ideal supporting point [n+1] supporting point [n]) / duration [n])
 - 2. supporting point [n+1] = supporting point [n] + slope [n] * duration [n]
 - n : table entry index
 - ideal supporting point means the ideal function value (usually a float value)
 - supporting point means the table entry value (integer value)

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

• the "end of table" entry may be a 32 bit zero value (at least duration has to be 0)

Figure 5.3.2.5.14.8-1: PRE_PWM timing example

ls

Register Name	Address	Description
ADDR_BASE	0x04	DMA base address register
U_ADDR	0x30	DMA address offset register
U_LW	0x32	table entry low word register
U_HW	0x34	table entry high word register
U_LW_RLD	0x36	table entry low word reload register
U_HW_RLD	0x38	table entry high word reload register
V_ADDR	0x40	DMA address offset register

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

Register Name	Address	Description
V_LW	0x42	table entry low word register
V_HW	0x44	table entry high word register
V_LW_RLD	0x46	table entry low word reload register
V_HW_RLD	0x48	table entry high word reload register
W_ADDR	0x50	DMA address offset register
W_LW	0x52	table entry low word register
W_HW	0x54	table entry high word register
W_LW_RLD	0x56	table entry low word reload register
W_HW_RLD	0x58	table entry high word reload register

Table 5.3.2.5.14.8-3: Register **U_LW** (0x32) table entry low word register

	MSB															LSB
Content	15:9							8:0								
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:9 : 8:0 : 0	slope duratic	- sign on - int	ied slo erpola	pe val tion dı	ue, ad uration	ded to count	slope t (num	accur ber of	nulato base p	r ever bhase	y base incren	e phase nent e	e incre vents)	ement	event

Table 5.3.2.5.14.8-4: Register V_LW (0x42) table entry low word register

	MSB															LSB
Content	15:9							8:0								
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:9 : 8:0 : d	slope duratic	- sign on - int	ed slo erpola	pe val tion dı	ue, ad uration	ded to	slope t (num	accur ber of	nulato base p	r every phase	y base incren	phase nent e	e incre vents)	ement	event

Table 5.3.2.5.14.8-5: Register W_LW (0x52) table entry low word register

	MSB															LSB
Content	15:9							8:0								
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:9 : 8:0 : d	slope duratic	- sign on - int	ed slo erpola	pe val tion dı	ue, ad iration	ded to count	slope (num	accur ber of	nulato base p	r ever bhase	y base incren	phase nent e	e incre vents)	ement	event

Table 5.3.2.5.14.8-6: Register U_HW (0x34) table entry high word register

	MSB															LSB
Content	15	14:0														
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15 : u 0 : HS 1 : HS 14:0 :	se_cfg S and I S and I S and I]_on - _S are _S are _acc -	OFG. on handl unsig	on_sta ed like ned sl	te usa e confi ope ac	gured	by CF lator ir	G.on_ nterpol	state lation s	start va	alue				

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15	14:0														
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15 : u 0 : HS 1 : HS 14:0 :	se_cfg 6 and I 6 and I : slope	g_on - LS are LS are _acc -	CFG.c on handl unsig	on_sta ed like ned sl	te usa e config ope ac	ge gured ccumu	by CF lator ir	G.on_ nterpol	state ation s	start va	alue				

Table 5.3.2.5.14.8-7: Register V	HW (0x44) table entry	y high word	register
		/		

Table 5.3.2.5.14.8-8: Register W_HW (0x54) table entry high word register

	MSB															LSB
Content	15	14:0														
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15 : u 0 : HS 1 : HS 14:0 :	se_cfg S and I S and I S slope]_on - _S are _S are _acc -	CFG.c on handl unsig	on_sta ed like ned sl	te usa confiç ope ac	ge gured ccumu	by CF lator ir	G.on_ iterpol	state ation s	start va	alue				

Table 5.3.2.5.14.8-9: Register U_LW_RLD (0x36) table entry low word reload register

	MSB															LSB
Content	15:9							8:0								
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:9 : 8:0 : c	slope duratic	- U_L on - U_	W.slop LW.du	be relo uration	ad va reloa	lue d valu	е					•			

Table 5.3.2.5.14.8-10: Register V_LW_RLD (0x46) table entry low word reload register

	MSB															LSB
Content	15:9							8:0								
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:9 :	slope	- V_L	W.slop	be relo	ad val	ue				•		•			
	8:0 : C	duratic	on - V_	LW.di	uration	reloa	d value	е								

Table 5.3.2.5.14.8-11: Register W_LW_RLD (0x56) table entry low word reload register

	MSB															LSB
Content	15:9							8:0								
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:9 : 8:0 : d	slope duratic	- W_l n - W	_W.slo _LW.d	pe relo uratior	bad va n reloa	ilue id valu	ie								

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15	14:0														
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15 : u 14:0 :	se_cfg slope	g_on - acc -	U_HW U_HV	/.use_ V.slop	cfg_oi e acc	n reloa reload	ad valu d value	e e				•			

Table 5.3.2.5.14.8-12: Register **U_HW_RLD** (0x38) table entry high word reload register

Table 5.3.2.5.14.8-13: Register V_HW_RLD (0x48) table entry high word reload register

	MSB															LSB
Content	15	14:0														
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15 : u 14:0 :	se_cfg slope	g_on - _acc -	V_HW V_HV	/.use_ V.slop	cfg_or e_acc	n reloa reload	id valu d value	e		•		•	•	•	

Table 5.3.2.5.14.8-14: Register **W_HW_RLD** (0x58) table entry high word reload register

	MSB															LSB
Content	15	14:0														
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15 : u 14:0 :	se_cfo slope	g_on - _acc -	W_HV W_HV	V.use_ W.slop	_cfg_o be_acc	n reloa : reloa	ad valı d valu	e e						•	-

Table 5.3.2.5.14.8-15: Register **ADDR_BASE** (0x04) DMA base address register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : Note:	addr_ Base	base addre	- interp ss valu	oolatio ue has	n char s to be	nels [even	OMA b (bit 0 =	ase ao = 0) !	ddress	value			•		

Table 5.3.2.5.14.8-16: Register U_ADDR (0x30) DMA address offset register

		-				,			-							
	MSB															LSB
Content	-	-	-	-	-	10:0										
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	10:0 effect Note:	addr ive DN	- interj /IA ado ess va	oolatio dress = lue ha	n char = comi s to be	nnel D mon D e a mu	MA ad MA ba Itiple c	ldress ase ade of 4 (bi	offset dress ts 1 ar	+ char nd 0 =	nnel D 0) !	MA ad	dress	offset		

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	10:0										
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	10:0 = effect Note:	addr ive DN Addre	- interp IA ado ess va	oolatio dress = lue ha	n char = comr s to be	nnel D mon D e a mu	MA ad MA ba Itiple c	ldress ase ad- of 4 (bi	offset dress ts 1 ar	+ char nd 0 =	nnel Dl 0) !	MA ad	dress	offset		

Table 5.3.2.5.14.8-17: Register V_ADDR (0x40) DMA address offset register

Table 5.3.2.5.14.8-18: Register W_ADDR (0x50) DMA address offset register

	MSB															LSB
Content	-	-	-	-	-	10:0										
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	10:0	addr	- interr IA add	oolatio dress =	n char = comr	nnel D mon D	MA ad MA ba	ldress ase ad	offset dress	+ char	nnel Di	MA ad	dress	offset		
	Note:	Addre	ess va	lue ha	s to be	e a mu	ltiple c	of 4 (bi	ts 1 ar	nd 0 =	0)!					

5.3.2.5.14.9 Scale and limit logic

- scales and limits slope accumulator value to PWM amplitude reload signal values
- uses common scale and limit registers (same for all channels):
- SCALE register:
 - PWM amplitude reload value scaling (consists of a multiply and a shift right value)
 - loaded from SCALE_SYNC register at sync reload event when SCALE_SYNC register has been written by software since previous sync reload event
- SCALE_SYNC register:
 - SCALE register reload value
- SCALE_OFFSET0 registers:
 - pre-amplitude-scale offset value
 - shifts the unsigned slope accumulator value downward / centers the unsigned slope accumulator waveform at 0 to be able to linear scale the resulting signed value
- SCALE_OFFSET1 registers:
 - post-amplitude-scale offset value
 - shifts the signed scaled values (centered at 0) upward to a positive range to be used as PWM amplitude reload values.
- LIMIT_LOW register:
 - PWM amplitude low limit compare value
- LIMIT_LOW_SET register:
 - PWM amplitude minimum value to use when value < LIMIT_LOW compare value

PRELIMINARY INFORMATION - Jan 18, 2017

- can be used to setup a minimum PWM HS on time
- LIMIT_HIGH register:
 - PWM amplitude high limit compare value
- LIMIT_HIGH_SET register:
 - PWM amplitude maximum value to use when value > LIMIT_HIGH compare value
 - can be used to setup a minimum PWM LS on time

Figure 5.3.2.5.14.9-1: Scale and limit logic

Table 5.3.2.5.14.9-1: Scale and limit logic

Register Name	Address	Description
SCALE	0x0E	scale register
SCALE_OFFSET0	0x10	scale offset 0 register
SCALE_SYNC	0x1A	scale reload register
SCALE_OFFSET1	0x1E	scale offset 1 register
LIMIT_LOW	0x20	PWM low limit compare register
LIMIT_LOW_SET	0x22	PWM low limit set value register
LIMIT_HIGH	0x24	PWM high limit compare register
LIMIT_HIGH_SET	0x26	PWM high limit set value register

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	14:1 2			11:0											
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Access Bit Description	R 14:12 11:0 : signed (2 ^ (1 signed SCAL unsigned SCAL SCAL SCAL SCAL SCAL SCAL SCAL SCAL	R/W : scale scale d scale d scale l0 + S d scale 10 + S d scale 10 + S d scale E_OF ned lin s force To gu _shift a _shift a _shift a _shift a _shift a _shift a 10 - (1 ng a 16 bit valu 11 - (1	$ R/W $ e_shif - sign e sub I e sub I CALE. e sub I FSET nit sub e sub I f SET nit sub e sub I f SET f SE	R/W t - scal ed am block i block s scale_ block c block c block v a cor cale ra cale ra scale r alue by alue by 16	R/W le sub plitude nput v scaled _shift)) output input rect so inge is range v a 10 v a 11	$\frac{ \mathbf{R}/\mathbf{W} }{ \mathbf{b} \mathbf{c}\mathbf{c}\mathbf{k} }$ $\frac{ \mathbf{b} \mathbf{c}\mathbf{k} }{ \mathbf{c} }$ $\frac{ \mathbf{a} \mathbf{u}\mathbf{e} }{ \mathbf{c} } = \frac{ \mathbf{c} }{ \mathbf{c} }$ $\frac{ \mathbf{c} }{ \mathbf{c} }$	R/W right solicand unsig = sign = sign = satu gic fur +51 I +10 I8 +2 ge mu ge mu	R/W shift va d ned sla ned sca ed sca rated s nction, 1, +512 023, + 2047 (f iltiplica iltiplica	R/W lue (pl ope ac ale sub ale sub signed the all 2 1024 full rar full rar	R/W lease s ccumul o block o block l scale lowed lowed hge) owed b	R/W see SC ator - c input scale sub b scale by a sł	R/W CALE.s unsigr value d valu lock o value	R/W scale of hed S(* sign e + un utput w ranges ht of 1 ht of 1	R/W descrip CALE_ ed SC signec value (s depe 0+0 bit	R/W otion) OFFS ALE.s negati nding	ET0 cale / ve on ults in
	Scalir a 16 k 16 + ⁻	ng a 16 bit valu 12 - (1	6 bit va ie: 0+2) =	alue by 16	' a 12	bit ran	ge mu	ıltiplica	int foll	owed b	oy a sł	nift rigl	nt of 1	0+2 bit	ts, res	ults in

Table 5.3.2.5.14.9-2: Register SCALE (0x0E) scale register

Table 5.3.2.5.14.9-3: Register SCALE	_SYNC (0x1A) scale reload register
--------------------------------------	------------------------------------

	MSB															LSB
Content	-	14:1 2			11:0											
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	14:12 11:0 :	: scal scale	e - SC _shift	ALE.s - SCAI	cale_s _E.sca	shift re Ile relc	load v ad va	alue lue								

PRELIMINARY INFORMATION – Jan 18, 2017

	MSB															LSB
Content	-	14:0														
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	14:0 :	scale	_offse	t - pre	scale	sub bl	ock of	fset va	lue (p	lease	see S(CALE.	scale (descrip	otion)	

Table 5.3.2.5.14.9-4: Register SCALE_OFFSET0 (0x10) scale offset 0 register

Table 5.3.2.5.14.9-5: Register SCALE_OFFSET1 (0x1E) scale offset 1 register

	MSB															LSB
Content	-	14:0														
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	14:0 : Note: be im	scale The v pleme	_offse value c nted (:	t - pos lepenc sinuso	t scale Is on t idal or	e sub t he PW space	olock c /M per vecto	iod wa	alue (aveforr ulatior	please n useo 1).	see S	SCALE	scale of P	descr WM m	iption) 10dula	tion to

Table 5.3.2.5.14.9-6: Register LIMIT_LOW (0x20) PWM low limit compare register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : If limit reload	limit_ t sub t d value	low - F block ir e	PWM a	amplitu alue <	ide rel LIMIT	oad va _LOW	alue: lo , LIMI ⁻	ow limi Γ_LOV	t comp V_SE⊺	bare va F value	alue e is us	ed as	PWM	ampliti	ude

Table 5.3.2.5.14.9-7: Register LIMIT_LOW_SET (0x22) PWM low limit set value register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	limit_	low_s	et - mi	nimum	PWN	l ampl	itude r	eload	value						

Table 5.3.2.5.14.9-8: Register LIMIT_HIGH (0x24) PWM high limit compare register

	MSB															LSB
Content	15:0															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : If limit reload	limit_ t sub t d value	high - block ir e	PWM	amplit alue >	ude re	load v _HIGF	value: I, LIMI	high lir T_HIC	mit cor GH_SE	mpare T valu	value ie is u	sed as	s PWN	l ampli	tude

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

Table 5.3.2.5.14.9-9: Register LIMIT_HIGH_SET (0x26) PWM high limit set value register

	MSB															LSB
Content	15:0															
Reset value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	limit_	high_s	set - m	aximu	m PW	M am	olitude	reload	d value)					

5.3.2.5.14.10 Sync logic

• BP_SYNC0 register:

- compare value for bps0 match event generation
- BP_SYNC1 register:
 - compare value for bps1 match event generation
 - captures BASE_PHASE value at sync capture event
- SYNC_EN register:
 - bps0 and pbs1 events behavior configuration
- SYNC_EXT_CFG register:
 - external sync signal handling behavior configuration
- bps0 match event:
 - generated if SYNC_EN.bps0 != 00 when BASE_PHASE == BP_SYNC0 at base phase increment event
 - is interrupt source
- bps1 match event:
 - generated if SYNC_EN.bps1 == 10 when BASE_PHASE == BP_SYNC1 at base phase increment event
 - is interrupt source
- sync reload event:
 - generated if SYNC_EN.bps0 == 10 at bps0 match event
- sync capture event:
 - generated if SYNC_EN.bps1 == 01 at selected external sync signal edge
 - is interrupt source
- external sync signals:
 - device input signals
 - · filtered using an adjustable integral filter
 - generate sync capture events
 - · can be evaluated as motor position reference

Table 5.3.2.5.14.10-1: Sync logic

Register Name	Address	Description
BP_SYNC0	0x12	base phase sync 0 register
BP_SYNC1	0x14	base phase sync 1 register
SYNC_EN	0x16	sync enable register
SYNC_EXT_CFG	0x18	external sync config register

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	11:0											
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	11:0 :	bp_sy	/nc - r	egister	usage	e depe	nds o	n SYN	C_EN	regist	er con	figurat	tion			

Table 5.3.2.5.14.10-2: Register BP_SYNC0 (0x12) base phase sync 0 register

Table 5.3.2.5.14.10-3: Register **BP_SYNC1** (0x14) base phase sync 1 register

	MSB															LSB
Content	-	-	-	-	11:0											
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	11:0 :	bp_sy	/nc - re	egister	usage	e depe	nds o	n SYN	IC_EN	regist	er con	figura	tion			

Table 5.3.2.5.14.10-4: Register **SYNC_EN** (0x16) sync enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:2		1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:2 : b 00 : B 01 : s 10 : b 1:0 : b 00 : B 01 : b 10 : b	P_SY ync ca ps1 m pps0 - P_SY ps0 m ps0 m	BP_S NC1 u apture atch e BP_S NC0 u atch e atch e	YNC1 inused event g YNC0 inused vent a vent g	regist genera enera regist nd syr enera	er usa ation e tion er er usa nc relo tion er	enable nabled ge con nabled	nfigura d nfigura ent ge	ation ation neratio	on ena	bled					

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	12	11:1 0		9:2								1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	12 : e 0 : se 1 : se 11:10 10 : c 11 : c 9:2 : i 1:0 : s 0 : ex 1 : ex 2 : ex 3 : ex	dge - : lected lected : intf_ lear ar lear ar ntf - e: src - sy ternal ternal ternal ternal	sync c extern set - e nd set nd set xterna ync ca sync s sync s sync s sync s	apture nal syr nal syr externa actual actual l sync signal (signal (signal (e event ac sign ac sign al sync state state signal event s 0 selec 2 selec 3 selec	al risir al falli signa to 0 to 1 integr source cted cted cted cted	ce edg ng edg ng edg I integ ration f	e sele ge ration ilter th tion	filter s	et con Id valu	nmand e					

Table 5.3.2.5.14.10-5: Register SYNC_EXT_CFG (0x18) external sync config register

5.3.2.5.14.11 Interrupt handling registers

Table 5.3.2.5.14.11-1: Interrupt handling registers

Register Name	Address	Description
IRQ_STATUS	0x70	IRQ status register
IRQ_MASK	0x74	IRQ mask register
IRQ_VENABLE	0x78	IRQ vector enable register
IRQ_VDISABLE	0x7A	IRQ vector disable register
IRQ_VMAX	0x7C	IRQ max vector register
IRQ_VNO	0x7E	IRQ vector number register

Table 5.3.2.5.14.11-2: Register IRQ_STATUS (0x70) IRQ status register

	MSB															LSB
Content	-	-	-	-	-	-	-	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	8 : w_ 7 : v_ 6 : u_ 5 : rel 4 : w_ 3 : v_ 2 : u_ 1 : bp 0 : bp	_dma_ dma_r dma_r oad_e _reload reload s1_ev s0_ev	rdy - ir dy - in rdy - ir rror_e _evt - _evt - _evt - t - bps t - bps	nterpol terpol iterpol vt - int interp interpol interpol 1 mate 0 mate	ation of ation of erpola olation olation olation ch eve ch eve	channe hanne tion ch n chan chan chan n chan n chan nt or s nt	el W D el V DN el U DN nannel nel W nel V r nel U r sync ca	MA id MA idle MA idle reload reload reload reload	le e ad erro d even event event event	or ever t	nt					

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	8:0								
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R/W								
Bit Description 8:0 : mask - enable irq source 1: enabled 0: disabled																

Table 5.3.2.5.14.11-3: Register IRQ_MASK (0x74) IRQ mask register

Table 5.3.2.5.14.11-4: Register IRQ_VENABLE (0x78) IRQ vector enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description 3:0 : vno - vector number of interrupt to enable													-			

Table 5.3.2.5.14.11-5: Register IRQ_VDISABLE (0x7A) IRQ vector disable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	Bit Description 3:0 : vno - vector number of interrupt to disable															

Table 5.3.2.5.14.11-6: Register IRQ_VMAX (0x7C) IRQ max vector register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description 3:0 : vmax - needed for nested interrupt support software writes current vector number to this register, so only interrupts with higher priority (lower vector number) can nest																

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : vread: when write:	/no - vector no irq vecto	r numb is per r numb	per of ending t ber of i	enable he firs interru	d pene t unus pt eve	ding in ed irq nt to c	terrup numbe lear	t with I er is re	highes	t prior d.	ity (sm	allest	vector	numb	er).

5.3.2.5.15 PWM Module (PWMN)

5.3.2.5.15.1 Description

The PWM module implements a 4 channel 16 bit PWM with dead time insertion and overcurrent handling.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

Elmos Semiconductor AG
PRELIMINARY INFORMATION - Jan 18, 2017

5.3.2.5.15.2 Features

- common PWM period counter
 - · sawtooth, inverted sawtooth, triangle and inverted triangle counting
 - 4 bit prescaler, 16 bit counter
 - · generates reload event used to update PWM channel registers from their reload equivalents
 - 4 bit Nth PWM period start event counter to reduce PWM channel register reload rate
- 4 PWM channels
 - · left and right edge aligned PWM waveform
 - center aligned PWM waveform
 - start and stop time stamp generated PWM waveform
 - dead time insertion
 - independent or common dead time configuration
- overcurrent handling
 - evaluation of NALLOFF device input signal
 - configurable asynchronous PWM signal masking
 - configurable filtered synchronous PWM signal masking and PWM state change
- generates ADC conversion trigger (dead time event) signals fed to the ADC control module
- PRE_PWM module interface to reduce CPU load
 - PRE_PWM module feeds PWM module registers with self-advancing channel reload values
- vector based interrupt handling
 - overcurrent interrupt
 - · PWM Nth period start and middle event interrupts
 - dead time event interrupts

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

5.3.2.5.15.3 Module Block Diagram

Figure 5.3.2.5.15.3-1: Module Block Diagram

5.3.2.5.15.4 Abbreviations

- HS : PWM channel high-side signal
- LS : PWM channel low-side signal
- PS : PWM signal before split to HS and LS and dead time insertion
- LH : PWM PS change from low to high
- HL : PWM PS change from high to low
- DT : dead time

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

- DT_LH : PS low to high dead time
- DT_HL : PS high to low dead time
- DT_CNT : dead time counter

5.3.2.5.15.5 Module parts The PWM module consists of four main parts:

- PWM period counter
- 4 PWM channels
- PWM module state handling logic
- PWM module interrupt logic

The PWM period counter generates a mode dependent, prescaled CNT waveform, start and reload event used by each channel in parallel. In addition Nth start and middle events are supplied to the PWM module interrupt logic. The PWM phase signal is supplied to the ADC control module for time stamp triggered ADC conversion.

Each PWM channel implements a SP signal using the CNT waveform and a configurable compare logic. The internal PS signal is used to generate high and low side signals including dead time insertion. An overcurrent condition can be configured to mask the high and low side PWM signals. Each channel supplies two dead time events (LH and HL) to the PWM module interrupt logic. The dead time event signals are also supplied to the ADC control module for dead time triggered ADC conversion.

The PWM module state handling logic implements two states: running and stopped. The CMD register can be used to change the PWM module state. An overcurrent condition can be evaluated by the PWM state logic to switch off the PWM outputs and change PWM module state to stopped.

The PWM module interrupt logic evaluates the overcurrent flag, Nth start event, middle event and the dead time events of all PWM channels and supplies a module interrupt signal to the system main vector interrupt controller.

5.3.2.5.15.6 Common registers and PWM state

- CFG (configuration) register:
 - used to configure PWM module behavior
- CMD (command) register:
 - used to change the PWM module state
- STATE register:
 - allows to check the PWM module state
- overcurrent evaluation:
 - NALLOFF signal can be used to signal overcurrent
 - · overcurrent can be configured to asynchronously mask PWM HS and LS signals
 - overcurrent can be configured to be filtered and evaluated by PWM state unit
 - integration filter threshold can be configured using CFG.oc_intf
 - when a filtered overcurrent occurs:
 - STATE.oc flag, which is an interrupt source, will be set to 1
 - STATE.run changes from running to stopped
 - STATE.oc can be cleared by CMD.oc

Table 5	5.3.2.5.1	15.6-1	:	Common	registers
---------	-----------	--------	---	--------	-----------

Register Name	Address	Description
CFG	0x00	config register
CMD	0x02	command register

PRELIMINARY INFORMATION - Jan 18, 2017

Register Name	Address	Description
STATE	0x04	state register

Table 5.3.2.5.15.6-2: Register CFG (0x00) config register

	MSB															LSB
Content	15	14	13	12:6							5	4	3	2	1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15 : d 0 : ge 1 : ge 14 : re 13 : re 12:6 : 5 : oc 0 : syu 4 : oc 0 : as 1 : as 3 : de 0 : on 1 : ris 2 : mi This b 0 : no 1 : rel 1:0 : c 0 : syu 1 : syu 4 : oc 0 : as 1 : as 3 : de 0 : on 1 : rel 1:0 : c	t_evt_ nerate nerate estart_ estart_ coc_in _syn_ nchror nchror _asyn_ ynchror ynchror ad_tim ing an ddle_r bit is of reload oad ev cnt_mo awtoo iverted iangle	contin e dead cap_e en - th tf - syr en - sy nous o nous o _en - a onous onous ne_mo d fallir I - PW nly eva d even vent at ode - F th wave d sawt wave d triang	ue - de time e time e en - this his con hchron vochron vercur vercur asynch PWM = PWM = de - P e of PS ng edge M peri aluateo t at mi c middl PWM p reform ooth w form	ead tin events events s confi figura ous over nous over nous over rent ever rent ever	ne eve only w indepe- igurati- tion bit vercur valuati valuati valuati s over maski ead tir elayed S are o ddle ch iangle f period counte	ents be when F enden on bit is not rent ev rrent e on dis on ena currer ng dis ng ena ne ins delaye hannel mode	havior S doe t from is not o evaluation abled abled abled abled ertion d regist s.	r config s not l PS du evalua ated in on inte- ion er M signa mode er relo	guratic have 0 ity cyc ited in hard gral fi hable al mas	on 1% or ⁻¹ le hardw ware Iter thr sking e	100% (vare reshold	duty c	ycle e confi	guratio	on

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	W	W	W	W
Bit Description	3 : int 2 : res writing 1 : oc 0 : run writing writing	f_sync start - - writi n - PW g 0 : cl g 1 : cl	:_clr - PWM estarts ng 1 : 'M sta hange hange	writing period clears rt / sto s PWN s PWN	1 : cle count period PWM p com A mod	ears ov er rest d coun state mand ule sta ule sta	vercur tart co iter an overcu ate to ' ate to '	rent in mman d capt urrent stoppe runnin	tegral d ures C flag ed"	filter NT to	CNT_	REST	ART r	egiste	r	

Table 5.3.2.5.15.6-4: Register STATE (0x04) state register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	1 : oc 0 : rur 0 : sto 1 : rur	- 1 : c ı - PW opped ıning	vercu /M mo	rrent o dule s	ccurre tate	ed										

5.3.2.5.15.7 PWM period counter

- PRESCALER register:
 - down counting with system clock
 - loaded from PRESCALER_RELOAD when PRESCALER == 0
- CNT_MAX register:
 - loaded from CNT_MAX_RELOAD at reload event and
 - in case of up counting CNT when CNT == CNT_MAX
 - in case of down counting CNT when CNT == 0
- CNT (PWM period counter):
 - incremented or decremented when PRESCALER == 0
 - loaded with 0
 - in case of up counting CNT when CNT == CNT_MAX
 - loaded from CNT_MAX
 - in case of down counting CNT when CNT == 0
 - used by PWM channels
- CNT_RESTART register:
 - loaded with CNT value on CMD.restart
- PWM_PHASE register:
 - sawtooth waveform mode:
 - PWM phase = CNT

PRELIMINARY INFORMATION - Jan 18, 2017

- PWM period = one time CNT_MAX+1 cycles
- triangle waveform mode:
 - PWM phase = 0x8000 + (CNT & 0x7FFF)
 - PWM period = two times CNT_MAX+1 cycles
- PWM phase can be used by ADC control module for time stamp based ADC conversion
- NTH_START register:
 - down counting at start events
 - loaded from NTH_START_RELOAD at Nth start event
- start event:
 - generated at each PWM period start
 - generated in sawtooth and triangle modes
 - used by PWM channels
- Nth start event:
 - generated at start event when NTH_START == 0
 - is interrupt source
- middle event:
 - generated in the middle of the PWM period
 - · generated in triangle modes only
 - no middle events will be generated when NTH_START_RELOAD is evaluated as non-zero value at Nth start event !
 - is interrupt source
- reload event:
 - · combination of Nth start event and middle event
 - used by PWM channels

Figure 5.3.2.5.15.7-1: PWM period counter mode dependent CNT_MAX reload behavior (middle_rl = 0)

PRELIMINARY INFORMATION - Jan 18, 2017

Figure 5.3.2.5.15.7-2: PWM period counter mode dependent CNT_MAX reload behavior (middle_rl = 1)

Register Name	Address	Description
CNT	0x06	counter register
PWM_PHASE	0x08	PWM phase register
PRESCALER	0x0A	current prescaler register
CNT_MAX	0x0C	current max counter register
PRESCALER_REL OAD	0x10	prescaler reload register
CNT_MAX_RELOA D	0x12	max counter reaload register
CNT_RESTART	0x16	value of CNT
NTH_START	0x18	Configure n-th start
NTH_START_REL OAD	0x1A	n-th start reload value

Table 5.3.2.5.15.7-1: PWM period counter

Table 5.3.2.5.15.7-2: Register **PRESCALER** (0x0A) current prescaler register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : presc	oresca ale pe	iler - P riod =	WM p	eriod o	counte R.pres	r pres scaler	caler + 1 clc	ock cyd	cles						

Table 5.3.2.5.15.7-3: Register **PRESCALER_RELOAD** (0x10) prescaler reload register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : r	eload	- PRE	SCAL	ER reg	gister ı	reload	value								

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : r	nth_sta	art - in	fluence	es stai	t even	t and	middle	even	t gene	ration					

Table 5.3.2.5.15.7-4: Register NTH_START (0x18) Configure n-th start

Table 5.3.2.5.15.7-5: Register NTH_START_RELOAD (0x1A) n-th start reload value

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : I	nth_sta	art_rel	oad - I	NTH_S	START	regis	ter relo	bad va	lue						

Table 5.3.2.5.15.7-6: Register **CNT_MAX** (0x0C) current max counter register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : The a sawto triang	cnt_n llowec oth wa le way	nax - F I maxi avefor reform	WM p mum v m moc mode	value c les : (2 s : (2^	countii lepenc 2^16)- 15)-1	ng ran Is on t 1	ge cor he use	nfigura ed cou	ition nting r	node:		-			

Table 5.3.2.5.15.7-7: Register CNT_MAX_RELOAD (0x12) max counter reaload register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	reload	d - CN	T_MA	X regi	ster re	load v	alue				•	1			

Table 5.3.2.5.15.7-8: Register CNT (0x06) counter register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	cnt -	PWM	period	count	er							1			

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 :	cnt_re	estart	- value	of CN	VT at t	he last	time a	a resta	art com	mand	was is	ssued			

Table 5.3.2.5.15.7-9: Register CNT_RESTART (0x16) value of CNT

Table 5.3.2.5.15.7-10: Register **PWM_PHASE** (0x08) PWM phase register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	15:0 : the co sawto triang first has secon	oding o oth wa le wav alf per	_phase of this avefor veform iod : e perioo	e - PW value (m moc mode quals d : equ	M pha depen les : e s : CNT v als (C	ase sig ds or t quals value NT va	nal va he use CNT v	lue ed cou alue 0x7FF	Inting	mode: x8000						

5.3.2.5.15.8 PWM channels

- PWMx_CFG (configuration) register:
 - used to configure the high-side (HS) and low-side (LS) waveform behavior
 - used to configure PRE_PWM module signals as register reload source
- PWMx_ON register:
 - used to set high-side (HS) and low-side (LS) PWM signal ON/OFF state
 - loaded from PWMx_ON_RELOAD at reload event
- PWMx_ON_RELOAD register:
 - PWMx_ON reload value
- PWMx_C0 and PWMx_C1 (compare value) registers:
 - used to configure PS signal LH and HL edge timestamps
 - loaded from PWMx_C0_RELOAD and PWMx_C1_RELOAD at reload event
- PWMx_C0_RELOAD and PWMx_C1_RELOAD registers:
 - PWMx_C0 and PWMx_C1 reload values
- PWMx_DEAD_TIME register:
 - used to configure PS signal LH and HL edge dead time values
 - loaded from DEAD_TIME_RELOAD_CH at reload event (depending on the DEAD_TIME_RELOAD_CH reload enable configuration)
- dead time counter (DT_CNT):
 - down counting with prescaled clock rate
- dead time events:
 - generated at PS signal LH and HL edge or after extension time
 - are interrupt sources

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

• can be used by ADC control module as measurement trigger

Figure 5.3.2.5.15.8-1: count mode and compare mode dependent PS waveform examples

14010 0:0:2:0:10:0 1		
Register Name	Address	Description
PWM0_CFG	0x20	PWM0 config register
PWM0_C0	0x22	current PWM0 compare 0 register
PWM0_C1	0x24	current PWM0 compare 1 register
PWM0_ON	0x26	current PWM0 on register
PWM0_C0_RELOA D	0x28	PWM0 compare 0 reload register
PWM0_C1_RELOA D	0x2A	PWM0 compare 1 reload register
PWM0_ON_RELO AD	0x2C	PWM0 on reload register
PWM0_DEAD_TIM E	0x2E	PWM0 dead time config register
PWM1_CFG	0x30	PWM1 config register
PWM1_C0	0x32	current PWM1 compare 0 register
PWM1_C1	0x34	current PWM1 compare 1 register
PWM1_ON	0x36	current PWM1 on register
PWM1_C0_RELOA D	0x38	PWM1 compare 0 reload register
PWM1_C1_RELOA D	0x3A	PWM1 compare 1 reload register
PWM1_ON_RELO AD	0x3C	PWM1 on reload register
PWM1_DEAD_TIM E	0x3E	PWM1 dead time config register

Table 5.3.2.5.15.8-1: PWM channels

PRELIMINARY INFORMATION - Jan 18, 2017

Register Name	Address	Description
PWM2_CFG	0x40	PWM2 config register
PWM2_C0	0x42	current PWM2 compare 0 register
PWM2_C1	0x44	current PWM2 compare 1 register
PWM2_ON	0x46	current PWM2 on register
PWM2_C0_RELOA D	0x48	PWM2 compare 0 reload register
PWM2_C1_RELOA D	0x4A	PWM2 compare 1 reload register
PWM2_ON_RELO AD	0x4C	PWM2 on reload register
PWM2_DEAD_TIM E	0x4E	PWM2 dead time config register
PWM3_CFG	0x50	PWM3 config register
PWM3_C0	0x52	current PWM3 compare 0 register
PWM3_C1	0x54	current PWM3 compare 1 register
PWM3_ON	0x56	current PWM3 on register
PWM3_C0_RELOA D	0x58	PWM3 compare 0 reload register
PWM3_C1_RELOA D	0x5A	PWM3 compare 1 reload register
PWM3_ON_RELO AD	0x5C	PWM3 on reload register
PWM3_DEAD_TIM E	0x5E	PWM3 dead time config register

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	5	4	3:2		1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	5 : igr 0 : sta 1 : sta 4 : on The ra 1 : PV 3:2 : a Both r 00 : ra 00 : ra 00 : ra 00 : ra 00 : ra 00 : if 01 : if 10 : s when when when	art eve art eve art eve _src - egister VM0_(c_src - register PWM0_ PWM0_ Cmp_n (CNT (CNT (CNT (CNT (CNT (CNT (Start	c_evt - ent is u ent doe PWM r can b ON_R - PWW ers car r upda - PWW ers car r upda - C0_F _C1_F combir node - < PW >= PV ar-moc == PV event)	Ignore sed to s not i 0_ON_ be con ELOAI 10_C0_ n be co te by s ELOA ELOA ELOA ELOA Nation PS sig VM0_C VM0_C VM0_C VM0_C	e start set P: influen _RELC D regis _RELC D regis _RELC onfigur D regi D regi	event S to 0 ce PS DAD re d by so ster ca DAD a ed by re only ster ca ster ca ster ca ster ca ster ca ster ca ster ca ster se only ster ca ster ca by ster ca by ster ca ster ca by ster ca ster ca ster ca ster ca ster ca ster ca by ster ca ster ca ca ster ca ster ca ca ster ca ster ca ca ster ca ca ster ca ca ster ca ca ster ca ca ster ca ca ca ca ca ca ca ca ca ca ca ca ca c	if PWI signa egister oftware n also nd PW softwa an also an also ion co se PS else P t to 1, t to 0,	$M0_CF$ I state update be up M0_C are in a 'M0_C are in a o be up o be up mpare = 0 S = 0 else else	G.cm e sour y case dated 1_RE ny ca odatec odatec	p_moo ce cor , by PR LOAD se. I by Pf by Pf	de == figura E_PW regist	tion /M mo er upd VM mo	dule ate so odule odule	urce c	onfigu	ration

Table 5.3.2.5.15.8-2: Register PWM0_CFG (0x20) PWM0 config register

Table 5.3.2.5.15.8-3: Register **PWM0_C0** (0x22) current PWM0 compare 0 register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	: pwm_ e see	_c - PS CFG.c	S wave	form (ode fo	genera or deta	ition c ils	ompar	e valu	es	·					

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : please	pwm_	_c - PS CFG.c	S wave	form (ode fo	genera or deta	ition c	ompar	e valu	es						

Table 5.3.2.5.15.8-4: Register PWM0_C1 (0x24) current PWM0 compare 1 register

Table 5.3.2.5.15.8-5: Register **PWM0_ON** (0x26) current PWM0 on register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	1 : hs 0 : HS 1 : HS 0 : ls 0 : LS 1 : LS	- HS s = 0 S PWN - LS si = 0 PWN	signal 1 signa gnal e 1 signa	enable al enat nable I enab	bled											

Table 5.3.2.5.15.8-6: Register PWM0_C0_RELOAD (0x28) PWM0 compare 0 reload register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	pwm_	_c - P\	NM0_0	C0 reg	ister re	eload	value								

Table 5.3.2.5.15.8-7: Register PWM0_C1_RELOAD (0x2A) PWM0 compare 1 reload register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	pwm_	_c - P\	VM0_0	C1 reg	jister re	eload	value								-

Table 5.3.2.5.15.8-8: Register **PWM0_ON_RELOAD** (0x2C) PWM0 on reload register

		-		_	_		` '				-					
	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	1 : hs 0 : ls :	- PWI - PWM	10_0N	V regis	ster hs ter ls r	reload	d value value	Ð								
	0		0			0.044										

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:8								7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : 0 : no 7:0 : h 0 : no	low_t dead high_to dead	o_high time ir o_low time ir	n - dea nserteo - dead nserteo	d time d betw time i d betw	e insert een LS nserte een LS	ed at S and d at P S and	PS (LH HS sig S (HL) HS sig	H) gnal ec) gnal ec	lges lges						

Table 5.3.2.5.15.8-9: Register PWM0_DEAD_TIME (0x2E) PWM0 dead time config register

Table 5.3.2.5.15.8-10: Register PWM1_CFG (0x30) PWM1 config register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	5	4	3:2		1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	5 : igr 0 : sta 1 : sta 4 : on The re 1 : PV 3:2 : c Both r 00 : re 01 : P 10 : P Note: 1:0 : c 00 : if 01 : if 10 : s when when when	art eve art eve src - egister VM1_(c_src - register VM1_(c_src - register WM1_ WM1_ The c cmp_n (CNT (CNT (CNT (CNT (CNT (CNT (Start	evt - nt is u nt doe PWM can b PWM can b PWM ers car c0_R C0_R C0_R C0_R C0_R C0_R C0_R C0_R C	Ignore sed to s not i 1_ON_ pe conf ELOAL 1_C0_ i be co be co i be co	e start set PS nfluen _RELC iigurec D regis _RELC onfigure oftwar D regi D regi D regi 11 is ir gnal ge 0) PS C0) PS C0) PS C1) PS Set to	event S to 0 ce PS DAD re I by sc Ster ca DAD an ed by ster ca DAD an ed by ster ca Ster ca anvalid. enerat = 1, el S is sel 0	if PWI signa gister ftware n also nd PW softwa an also an also ion co se PS else P to 1, to 0,	M1_CF I state update be up M1_C ure in a be up M1_C ure in a be up be up be up S = 0 S = 0 else else	e sour y case dated 1_RE ny cas odated odated	p_moc ce cor s. by PR LOAD se. I by PF by PF	de == figura E_PW regist RE_PV RE_PV	tion /M mo er upd VM mo	dule ate so odule odule	urce c	onfigu	ration

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	: pwm_ e see	_c - PS CFG.c	S wave	form (genera or deta	ition c ils	ompar	e valu	es		·				

Table 5.3.2.5.15.8-11: Register PWM1_C0 (0x32) current PWM1 compare 0 register

Table 5.3.2.5.15.8-12: Register PWM1_C1 (0x34) current PWM1 compare 1 register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	: pwm_ e see	_c - PS CFG.c	S wave	eform (lode fo	genera or deta	ition c	ompar	e valu	es						

Table 5.3.2.5.15.8-13: Register **PWM1_ON** (0x36) current PWM1 on register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	1 : hs 0 : HS 1 : HS 0 : ls 0 : LS 1 : LS	- HS s 6 = 0 6 PWN - LS si 6 = 0 6 PWN	signal 1 signa gnal e 1 signa	enable al enat nable I enab	e bled											

Table 5.3.2.5.15.8-14: Register PWM1_C0_RELOAD (0x38) PWM1 compare 0 reload register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0	pwm_	_c - P\	NM1_0	C0 reg	ister r	eload	value								

Table 5.3.2.5.15.8-15: Register PWM1_C1_RELOAD (0x3A) PWM1 compare 1 reload register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0	pwm_	_c - P\	NM1_0	C1 reg	ister re	eload	value								

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	1 : hs 0 : ls ·	- PWI - PWN	01_01 11_0N	V regis I regis	ster hs ter ls r	reload eload	d value value	9								

Table 5.3.2.5.15.8-16: Register PWM1_ON_RELOAD (0x3C) PWM1 on reload register

Table 5.3.2.5.15.8-17: Register PWM1_DEAD_TIME (0x3E) PWM1 dead time config register

	MSB															LSB
Content	15:8								7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : 0 : no 7:0 : h 0 : no	low_t dead nigh_to dead	o_high time ir o_low time ir	n - dea nserteo - dead nserteo	d time d betw time i d betw	e insert reen La nserte reen La	ted at S and ed at P S and	PS (LH HS sig S (HL) HS sig	H) gnal ec) gnal ec	dges dges						

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	5	4	3:2		1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	5 : igr 0 : sta 1 : sta 4 : on The ro 1 : PV 3:2 : o Both r 00 : ro 01 : P 10 : P Note: 1:0 : o 00 : if 01 : if 10 : s when when when	art eve art eve art eve _src - egister VM2_(c_src - register PWM2_ register PWM2_ Comp_n (CNT (CNT (CNT (CNT (CNT (Start	c evt - ent is u ent doe PWM: r can b ON_RI PWW ers car c upda c PWW ers car r upda c O_F _C1_F combir node - < PW >= PV ar-moc == PV event)	Ignore sed to s not i 2_ON_ be cont I2_CO_ 1 be co 1 be co te by s ELOAI ELOA ELOA ELOA Nation PS sig VM2_C VM2_C VM2_C VM2_C VM2_C VM2_C	e start set P. influen _RELC D regis _RELC onfigur oftwai D regi D regi Co) PS CO) PS CO) PS CO) PS CO) PS	event S to 0 ice PS DAD re d by so ster ca DAD a ed by re only ister ca ister ca ister ca ister ca ister ca ister ca is se conly ister ca is se conly ister ca is se conly is	if PWI signa egister oftware in also nd PW softwa , an also an also ion co lse PS else P t to 1, t to 0,	M2_CF I state update in any be up M2_C ure in a $M2_C$ ure in a o be up o be up mpare = 0 S = 0 else else	G.cm e sour y case dated 1_RE iny ca odatec odatec	p_moo rce cor e. by PR LOAD se. d by Pf d by Pf	de == figura RE_PW regist	10 tion /M mo er upd WM mo	dule ate so odule odule	urce c	onfigu	ration

Table 5.3.2.5.15.8-18: Register PWM2_CFG (0x40) PWM2 config register

Table 5.3.2.5.15.8-19: Register **PWM2_C0** (0x42) current PWM2 compare 0 register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	pwm_	_c - PS CFG.c	S wave	form (ode fo	genera or deta	ition c ils	ompar	e valu	es						

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

Table 5.3.2.5.15.8-20: Register PWM2	_C1	(0x44) current PWM2	compare ⁻	1 register
--------------------------------------	-----	---------------------	----------------------	------------

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0	pwm_ e see	_c - PS CFG.c	S wave	eform (lode fo	genera or deta	ition c ils	ompar	e valu	es						

Table 5.3.2.5.15.8-21: Register PWM2_ON (0x46) current PWM2 on register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	1 : hs 0 : HS 1 : HS 0 : lS 0 : LS 1 : LS	- HS s 6 = 0 6 PWN - LS si = 0 9 PWN	signal 1 signa gnal e 1 signa	enable al enat nable I enab	e bled bled											

Table 5.3.2.5.15.8-22: Register PWM2_C0_RELOAD (0x48) PWM2 compare 0 reload register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	pwm_	_c - PV	VM2_(C0 reg	ister re	eload	value								

Table 5.3.2.5.15.8-23: Register PWM2_C1_RELOAD (0x4A) PWM2 compare 1 reload register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	pwm_	_c - P\	VM2_0	C1 reg	ister r	eload	value								

Table 5.3.2.5.15.8-24: Register PWM2_ON_RELOAD (0x4C) PWM2 on reload register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	1 : hs 0 : ls ·	- PWI - PWN	M2_01 12_0N	V regis I regist	ster hs ter Is r	reload eload	d value value	9								

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:8								7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : 0 : no 7:0 : ł 0 : no	low_t dead high_to dead	o_high time ir o_low time ir	n - dea nserteo - dead nserteo	d time d betw time i d betw	einsert een LS nserte een LS	ed at S and d at P S and	PS (LH HS sig S (HL) <u>HS sig</u>	H) gnal eo gnal eo	lges lges						

Table 5.3.2.5.15.8-25: Register PWM2_DEAD_TIME (0x4E) PWM2 dead time config register

Table 5.3.2.5.15.8-26: Register PWM3_CFG (0x50) PWM3 config register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	5	4	3:2		1:0	
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	5 : igr 0 : sta 1 : sta 4 : on The re 1 : PV 3:2 : c Both r 00 : re 01 : P Note: 1:0 : c 00 : if 01 : if 10 : s when when when	art eve art eve src - egister VM3_(c_src - register VM3_(c_src - register WM3_ The c cmp_n (CNT (CNT (CNT (CNT (CNT (CNT (Start	evt - nt is u nt doe PWM3 can b PWM3 rcan b PWM3 rs can PWM3 rs can combin node - < PW >= PV ar-mod == PV event)	Ignore sed to s not i 3_ON_ be conf ELOAL 3_C0_ i be co be co i be co	set PS nfluen _RELC iigurec D regis _RELC onfigure oftwar D regi D regi D regi D regi 0) PS C0) PS C0) PS C0) PS C0) PS C0) PS	event S to 0 ce PS DAD re $I by sc Ster caDAD all ed by sc ed by sced by sc ed by sc ed by sc ed by sced by sced$	if PWI signa gister ftware n also nd PW softwa an also an also ion co se PS else P to 1, to 0,	M3_CF I state update a in any be up M3_C are in a b be up mpare = 0 S = 0 else else	e sour y case dated 1_RE ny cas odated odatec	p_moc ce cor s. by PR LOAD se. I by PF by PF	figura E_PW regist RE_PV RE_PV	tion /M mo er upd VM mo	dule ate so odule odule	urce c	onfigu	ration

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : pleas	: pwm_ e see	_c - PS CFG.c	S wave mp_m	eform (lode fo	genera or deta	ition c	ompar	e valu	es						

Table 5.3.2.5.15.8-27: Register PWM3_C0 (0x52) current PWM3 compare 0 register

Table 5.3.2.5.15.8-28: Register PWM3_C1 (0x54) current PWM3 compare 1 register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 : please	pwm_	_c - P\$ CFG.c	S wave	eform (lode fo	genera or deta	ition c	ompar	e valu	es						

Table 5.3.2.5.15.8-29: Register **PWM3_ON** (0x56) current PWM3 on register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	1 : hs 0 : HS 1 : HS 0 : ls 0 : LS 1 : LS	- HS s 6 = 0 6 PWN - LS si = 0 PWN	signal 1 signa gnal e 1 signa	enable al enat nable I enab	e bled											

Table 5.3.2.5.15.8-30: Register PWM3_C0_RELOAD (0x58) PWM3 compare 0 reload register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0	pwm_	_c - P\	NM3_0	C0 reg	ister r	eload	value								

Table 5.3.2.5.15.8-31: Register PWM3_C1_RELOAD (0x5A) PWM3 compare 1 reload register

	MSB															LSB
Content	15:0															
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:0 :	pwm_	_c - P\	NM3_0	C1 reg	ister re	eload	value								

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Bit Description	1 : hs 0 : ls ·	- PWI - PWN	13_01 13_0N	N regis I regist	ster hs ter ls r	reload eload	d value value	9								

Table 5.3.2.5.15.8-32: Register PWM3_ON_RELOAD (0x5C) PWM3 on reload register

Table 5.3.2.5.15.8-33: Register PWM3_DEAD_TIME (0x5E) PWM3 dead time config register

	MSB															LSB
Content	15:8								7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15:8 : 0 : no 7:0 : h 0 : no	low_t dead high_to dead	o_high time ir o_low time ir	n - dea nserteo - dead nserteo	d time d betw time i d betw	e insert een La nserte een La	ted at S and ed at P S and	PS (LH HS sig S (HL HS sig	H) gnal eo) gnal eo	lges lges						

5.3.2.5.15.9 PRE_PWM module connection

Depending on the PWM channel configuration (PWMx_CFG), the PWM channels 0, 1 and 2 can be supplied with reload values for PWMx_C0_RELOAD, PWMx_C1_RELOAD and PWMx_ON_RELOAD registers from PRE_PWM module.

Please see PRE_PWM module description for details on reload value generation.

5.3.2.5.15.10 Common dead time registers

- DEAD_TIME register:
 - is a write only register
 - a write access sets all channel PWMx_DEAD_TIME register LH and HL values to the same dead time value
- DEAD_TIME_RELOAD_CH register:
 - common dead time value
 - 4x2 reload enable bits to configure which channel dead times will be reloaded with the common dead time value
- DEAD_TIME_RELOAD register:
 - a write access behaves like a write access to the DEAD_TIME_RELOAD_CH register with all reload enable bits set to 1
- **Note:** There is a value restriction, configuring DT_LH and DT_HL dead times:
 - It's not allowed to set DT_LH to zero and DT_HL to a non-zero value or vice-versa.
 - For this reason all FSM conditions only refer to DT which means both DT_LH and DT_HL.

PRELIMINARY INFORMATION - Jan 18, 2017

Figure 5.3.2.5.15.10-1: dead time insertion state machine

Figure 5.3.2.5.15.10-2: dead time modes

Register Name	Address	Description
DEAD_TIME	0x0E	current dead time register
DEAD_TIME_REL OAD	0x14	dead time reload register
DEAD_TIME_REL OAD_CH	0x1E	dead time reload config register

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7:0 : 0 a write to a c	dead_i e acce ommo	time - ess set on valu	comm s both e	on dea LH ar	ad time	e value dead t	ime va	lues c	of all P	WM cl	nannel	s (PW	′Mx_D	EAD_	TIME)

Table 5.3.2.5.15.10-2: Register DEAD_TIME (0x0E) current dead time register

Table 5.3.2.5.15.10-3: Register **DEAD_TIME_RELOAD** (0x14) dead time reload register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	7:0 : r a write bits se	eload e acce et to 1	- com	mon d naves	ead tir like a	ne val write a	ue relo access	to DE	lue AD_T	IME_F	RELOA	\D_C⊦	l with a	all relo	ad en	able

Table 5.3.2.5.15.10-4: Register **DEAD_TIME_RELOAD_CH** (0x1E) dead time reload config register

	MSB															LSB
Content	15	14	13	12	11	10	9	8	7:0							
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	15 : u 0 : rel 14 : u 0 : rel 13 : u 0 : rel 12 : u 0 : rel 11 : u 0 : rel 10 : u 0 : rel 9 : up 0 : rel 8 : up 0 : rel 7:0 : r 0 : rel 0 : rel 0 : rel 10 : u 0 : rel 10 : n 0 : rel	p_ch3 oad di p_ch3 oad di p_ch2 oad di p_ch2 oad di p_ch1 oad di _ch0_ oad di _ch0_ oad di _ch0_ oad di _ch0_ oad di _ch0_ oad di	Ih - F sablec hI - F sablec hI - F sablec hI - F sablec hI - F sablec _hI - PV sablec - com time ir	PWM c yWM c ywwww.second ywww.second ywww.second ywww.second ywww.second ywww.second ywwww.second ywww.second ywww.second ywww.second ywww.second ywwww.second ywwww.second ywwwwwwwwwwwwwwwwww.second ywwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww	hanne eload (hanne eload (hanne eload (hanne eload (annel eload (annel eload (anne) eload (an	I 3 DT enable I 3 DT enable I 2 DT enable I 2 DT enable I 1 DT enable 0 DT_ enable 0 DT_ enable ne relo	LH d d LH d d LH d d LH d d LH d d LH de d LH de d LH de d S and	ead tir ead tir ead tir ead tir ead tir ad tim ad tim lue <u>HS sic</u>	me rela me rela me rela me rela e reloa e reloa	oad er oad er oad er oad er oad en ad ena ad ena	able able able able able able able					

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

5.3.2.5.15.11 Interrupt handling registers

Table 5.3.2.5.15.11-1: Interrupt handling registers

Register Name	Address	Description
IRQ_STATUS	0x70	IRQ status register
IRQ_MASK	0x74	IRQ mask register
IRQ_VENABLE	0x78	IRQ vector enable register
IRQ_VDISABLE	0x7A	IRQ vector disable register
IRQ_VMAX	0x7C	IRQ max vector register
IRQ_VNO	0x7E	IRQ vector number register

Table 5.3.2.5.15.11-2: Register IRQ_STATUS (0x70) IRQ status register

	MSB															LSB
Content	-	-	-	-	-	10	9	8	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit Description	10 : d 9 : de 8 : de 7 : de 6 : de 5 : de 4 : de 3 : de 2 : min 1 : sta 0 : oc	ead_ti ad_tim ad_tim ad_tim ad_tim ad_tim ad_tim ad_tim ad_tim ddle_e art_evt - over	me_ev ne_evt ne_evt ne_evt ne_evt ne_evt ne_evt evt - m - Nth currer	/t_7 _6 - P _5 - P _3 - P _3 - P _2 - P _1 - P _0 - P iddle e start e start e	PWM c WM c WM c WM c WM c WM c WM c w WM c v event vent status	channe nanne nanne nanne nanne nanne nanne	el 3 D 3 DT 2 DT 2 DT 1 DT 1 DT 1 DT 0 DT	T_LH (_HL de _HL de _HL de _HL de _HL de _HL de	dead ti ead tin ead tin ead tin ead tin ead tin ead tin	ime eve ne eve ne eve ne eve ne eve ne eve ne eve	rent ent ent ent ent ent ent					

Table 5.3.2.5.15.11-3: Register IRQ_MASK (0x74) IRQ mask register

	MSB															LSB
Content	-	-	-	-	-	10:0										
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit Description	10:0 : 1: ena 0: disa	mask abled abled	- enal	ole irq	sourc	e										

Table 5.3.2.5.15.11-4: Register IRQ_VENABLE (0x78) IRQ vector enable register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	Description 3:0 : vno - vector number of interrupt to enable															

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : v	3:0 : vno - vector number of interrupt to disable														

Table 5.3.2.5.15.11-5: Register IRQ_VDISABLE (0x7A) IRQ vector disable register

Table 5.3.2.5.15.11-6: Register IRQ_VMAX (0x7C) IRQ max vector register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : vmax - needed for nested interrupt support software writes current vector number to this register, so only interrupts with higher priority (lower vector number) can nest															

Table 5.3.2.5.15.11-7: Register **IRQ_VNO** (0x7E) IRQ vector number register

	MSB															LSB
Content	-	-	-	-	-	-	-	-	-	-	-	-	3:0			
Reset value	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Bit Description	3:0 : vno - read: vector number of enabled pending interrupt with highest priority (smallest vector number). when no irq is pending the first unused irq number is returned. write: vector number of interrupt event to clear															

5.4 System Errors

Two types of errors can be detected by the E523.52: errors concerning the motor driver section of the IC and errors concerning the microcontroller.

5.4.1 Motor driver errors

The integrated motor driver contains a number of supervisory circuits to protect the B6 bridge and to report error conditions. In section "Monitoring and Safety Functions" a detailed description of potential failures and their rectification is available. VG under-voltage, VDD under-voltage, motor over-current and over-temperatureare checked. Reaction to these conditions can be configured based on the severity of each failure occurrence.

5.4.2 Microcontroller errors

To allow for fail-safe operation of the E523.52, a number of microprocessor internal fault conditions cause system errors which may either force an interrupt or a system reset:

Table 5.4.2-1: Microcontroller err	ors
------------------------------------	-----

Error Name	Effect	Explanation
Power On Reset	Reset	VDD supply rises above 2.2V(typ)
Brownout	Reset	VDD below 2.9V(max) , or VDDC below 1.5V(max)

PRELIMINARY INFORMATION - Jan 18, 2017

Error Name	Effect	Explanation
CPU Parity	Programmable	Parity error in CPU register
SRAM Parity	Programmable	SRAM access failed
Flash Bit corrected	Interrupt	Flash access has required a bit correction
Flash Bit failure	Programmable	Flash access has resulted in a bit error
Protected Write	Interrupt	Unexpected write access to a protected Flash area
Watchdog	Programmable	An error is asserted if the Software fails to trigger the watchdog timer correctly
Software	Programmable	Software has caused a reset event

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

6 Typical Application Circuit

Figure 6-1: Typical Operating Circuit

Thin film Resistors and ceramic capacitors without rating can be 0604(metric) or larger. For more information see "Component Selection" below.

Symbol	Description	Туре	Min	Тур	Max	Unit	Rating	Example
C _{VSUP,CER}	Supply capacitance HF	ceramic	80	1)		nF	100V	
C_{VSUP}	Supply capacitance LF	electrolytic	10	1)		μF	0.05Ω, 100V	
C _{VDD}	VDD output capacit- ance	ceramic	0.8	1	1.2	μF		
	VDDC output capa- citance		220	270	4700	nF		
R _{EN}	Optional enable tim- ing resistor	thinfilm	1	1)	100	kΩ		

PRELIMINARY INFORMATION – Jan 18, 2017

Symbol	Description	Туре	Min	Тур	Max	Unit	Rating	Example
C _{EN}	Optional enable tim- ing capacitor	ceramic		100		nF	100V	
L _{LX}	Switching inductor for $V_{VSUP} = 24V$			150μΗ ¹⁾		μH	240mA sat- uration cur- rent	WE744777 24-26, EPC B82462A
R _{LX}	Series resistance of LX inductance		1	5	10	Ω		
D _{LX}	Switching diode	Schottky					500mA, 100V	SS1H9/MU H1PB
	Forward voltage of switching diode at LX			0.6	0.8	V		
	Reverse voltage via switching diode at LX		V _{VSUP}					
	Reverse Recovery Time				25	ns		
C _{VG}	Buck output capacitor		26	33	100	μF	25V	
$R_{\text{ESR}_{CVG}}$	ESR of C _{VG}			1.8		Ω		
$C_{VG,CER}$	VG bypass capacitor	ceramic	10	22	33	nF	25V	
R _{BST}	Inrush current limiter	thinfilm		10		Ω		
C _{BST}	Bootstrap capacitor	ceramic		100		nF		
D _{BST}	Bootstrap diode	bipolar		0.6	0.6	V	500mA, 100V	SS1H9/MU H1PB
R _{GH1}	Gate resistor high- side	thinfilm	30	100		Ω		
R_{GH2}	Gate resistor high- side pulldown	thinfilm			2.2	MΩ		
R _{GL}	Gate resistor low- side	thinfilm	30	100		Ω		
M_{L},M_{H}	Power-MosFET			1)			100V	IRFS4610
R _{SN}	Optional snubber res- istor	thinfilm		4.7		Ω	0.5W	
C_{SN}	Optional snubber capacitor	ceramic		2.2		nF		
R _{SH}	Current sense shunt resistor	metal	1	1)	10	mΩ	≤1%,3W	WSL3637
Ro	Amplifier input offset resistor	thinfilm					≤1%	
R_{FP}	Amplifier input feed- back resistor	thinfilm		1)		kΩ	≤1%	
R _{FN}	Amplifier input feed- back resistor	thinfilm		1)		kΩ	≤1%	
R _G	Amplifier gain resistor	thinfilm	17.25	18		kΩ	≤1%	
R _{NRST}	External NRST pullup	thinfilm	4.7		100	kΩ		

¹⁾See Component Selection

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

6.1 Component Selection

The calculations suggested in the following section do not necessarily account for worst case parameters of the components suggested. The user is responsible for worst case calculations by considering min. and max. values in the corresponding datasheets.

For operation purpose, it is strongly forbidden to disconnect the supply voltage while the half-bridges are still connected to the supply voltage. The VSUP pin must always be connected to the drains of the high side power FETs. Any voltage drop >2.5V between a high side power FET drain and the VSUP pin will trigger the VDS desaturation detection and results in switching off the FETs and reporting an error.

6.1.1 Enable Threshold and Timing

It is possible to tune the activation threshold of the IC by attaching a resistor divider to EN. The E523.52 will activate once the voltage V_{EN} is greater than $V_{EN_LH} = 2.7V(min)$. EN has an integrated pulldown current of $I_{EN_IN} = 10\mu A(typ)$ and a debounce time of $T_{DEB_EN} = 100\mu s(typ)$. For additional glitch filtering add a filter capacitor G_{EN} to EN. C_{EN} is also recommended to improve the immunity of the application against EMI, ESD and short supply voltage transients.

6.1.2 Supply Filtering

Reverse Polarity

The E523.52 does not have internal reverse polarity protection and has to be protected along with the rest of the application if so desired. Several options are possible:

- No Protection This is a useful solution for energy recuperation where the power supply must sink and source energy. But a reverse connection of the supply pins will most likely destroy the application and may result in fire.
- **Diode in the supply path** This simplest method is not very well suited for motor applications as the power dissipation of a diode is significant at higher load currents. Energy returned from the motor cannot fly back into the supply and has to be stored locally in the bypass capacitors. Significant power surges can result in overvoltage and may have to be protected against.
- FET in the GND path An N-Channel FET in the GND path is fairly simple to implement with a small pullup resistor from its gate to supply. Care has to be taken in case of voltage surges and significant ground offsets can result relative to the outside world.
- FET in the supply path P and N-channel FETs in the supply path are the best solution. P-Channel devices are comparatively more expensive and N-channel FETs are more complex to control to achieve fast turn-on but also turn-off.

C_{VSUP} Dimensioning

The dimensioning of the electrolytic bypass capacitor is more complex. It must absorb supply surges in case of input transients as well as energy fed back by the motor. For ETSI EN 300 132-2 surge protection at least 470μ F with less than 50mOhm ESR are required to protect the E523.52 against overvoltage. This represents the minimum size! Its rating is defined by the ripple current of the motor. The peak to peak ripple value equals the peak motor current. It may be necessary to place several capacitors in parallel to increase the overall ripple current performance.

A small HF $C_{VSUP,CER}$ 100nF(typ) ceramic capacitor should be placed across the leads of CSUP to suppress fast transients.

Energy Recuperation

In addition the bypass capacitor may have to absorb the energy returned by the motor to prevent the local voltage from exceeding the maximum possible ratings of 72V. Worst case scenario is a motor that is actively braking and no energy can flow back into the supply because of a reverse polarity device or a line disruption. In that case the capacitor will have to absorb all the energy present in the motor at the beginning of breaking:

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

$$C_{SUP} \ge \frac{2 \cdot E_{Mot}}{\left(72V^2 - V_{BATmax}^2\right)}$$

With E_{Mot} being the mechanical energy present in the motor, and V_{BATmax} the maximum possible supply voltage. If the capacitance becomes too large, resistive braking with a brake chopper may be necessary.

Inrush Current Limit Surges

Hot-plugging the application into a low-ohmic high-voltage supply can lead to significant inrush current when the on-board capacitors are charged. This will lead to arcing at the connector and may cause significant input voltage transients at the IC beyond the absolute maximum ratings. It is recommended to limit the inrush current into the application. See the evaluation kit schematic for a possible circuit.

6.1.3 The Step-Down Supply

6.1.3.1 L_{LX} Inductor selection

For the given voltage regulation application (in continuous conducting mode), it is either recommended to choose an inductance value that is suitable for a current ripple of $\pm 30\%$ of the maximum application current (at typical operating frequency) or to use the following equations:

Depending on V_{VSUP} to V_{VG} ratio, usually two equations describe the peak-to-peak current ripple in the inductor L_{LX} . In continuous current mode (CCM), it can either be calculated from the maximum input voltage at VSUP ($V_{VSUP,MAX,APP}$) by

$$I_{RIPPLE,LX,PP1} = \frac{T_{ON,MIN,NOM} \cdot \left(V_{VSUP,MAX,APP} - V_{VG,NOM}\right)}{L_{VG}}$$
(1)

or by the following equation (with V_{F,DLX} being the forward voltage drop of the free-wheeling diode)

$$I_{RIPPLE,LX,PP2} = \frac{T_{OFF,MIN,NOM} \cdot \left(V_{VG,NOM} + V_{F,DLX}\right)}{L_{VG}}$$
(2)

Formula (1) describes the current ripple in on-time regulation (typ. at high V_{VSUP}), equation (2) is for off-time regulation (typ. at low V_{VSUP}). The maximum current ripple is the maximum from (1) and (2). For the minimum current ripple b) applies. Depending on VSUP to VG voltage ratio the ripple may be symmetric (with minimum and maximum being the same result). Consider tolerances for external components like L_{LX} during calculation.

For maximum ±30mA ripple current and inductor tolerances the calculation results in 6.1.3.1-1 below.

V _{VSUP}	Min L _{LX}	tolerance
12 V	≥ 120 μH	±20%
24V	≥ 150 μH	±20%
36 V	≥ 270 μH	±20%
48 V	≥ 390 μH	±20%
60 V	≥ 560 μH	±20%
74 V	≥ 680 μH	±20%

Table 6.1.3.1-1: Minimum recommended Inductances

The peak-to-peak ripple must be taken into account during choice of the external resistor R_{ESR,CVG} to provide an adequate ripple voltage to the regulation at pin VG (see Recommended Operation Conditions).

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

To choose a sufficiently high saturation current for the inductor $L_{\mbox{\tiny LX}},$ consider

• the maximum application load current plus half of the maximum ripple current calculated above and

• the current limitation including tolerance (to avoid excessive current peaks in L_{LX} during start up).

In general an additional saturation margin of >10% for the inductor current rating is recommended for transient effects, especially at extreme V_{VSUP} to V_{VG} voltage ratios.

DC resistance of L_{LX} (referred here as R_{LX}) reduces efficiency and contributes to the losses in the inductor (combined with AC losses which may arise due the use of high frequency operation). For the complex impedance of the inductor refer to the vendors information.

At a given load current ILOAD, resistance affects minimum input voltage required to regulate VVG in the following way

$$V_{VSUP,MIN} = V_{VG,NOM} + I_{LOAD} \cdot (R_{ON} + R_{LX})$$

For Voltages below $V_{VSUP,MIN}$ the converter enters the 100% duty-cycle mode.

6.1.3.2 C_{VG} capacitor selection

During nominal operation the serial resistance $R_{ESR,CVG}$ is important to generate a minimum output voltage ripple at V_{VG} . This ripple is required to provide high-frequency switching. Too low ripple voltages may derate the operating frequency stability.

It depends on peripheral elements chosen (L_{LX} and $R_{ESR,VG}$). Basically, it can be calculated using the inductor current ripple and $R_{ESR,CVG}$ (see L_{LX} Inductor Selection) by:

$$V_{RIPPLE,VG} = R_{ESR,VG} \cdot I_{RIPPLE,LX,PP}$$

(Using an electrolytic capacitor type the parameter $R_{ESR,VG}$ represents the sum of the ESR of the capacitor and the external resistor value.)

To reduce output voltage noise, the electrical serial inductance should be kept low. This can be achieved by placing a parallel ceramic type capacitor C_{VG_cer} of typ. 22nF (≤33nF). The main capacitance should consider the following equation.

The intrinsic output capacitors voltage variation during one cycle must be neglectable compared to the AC voltage ripple caused by the $R_{ESR,CVG}$. This dimensioning avoids an out-of-phase ripple voltage signal for the regulation and ensures controlled operating frequency. With the assumption of $T_{PERIOD,MAX} = 1/f_{OP,MIN}$, the resulting recommended minimum value for the capacitor is:

$$C_{VG} \ge \frac{4 \cdot T_{PERIOD,MAX}}{R_{ESR,VG}}$$

Both the result of the equation above and the minimum recommended capacitance for the B6 boot strapping of 26μ F have to be taken into account.

Remark:

In General, take into account, that many capacitor types show a strong temperature and voltage dependency, or may be sensible to high peak currents. Make sure, that at extreme temperatures and voltages the capacitance value is reached. For automotive environments capacitors of X7R material (or better) may be necessary.

72V Programmable Brushless Motor Controller with 16bit CPU

PRELIMINARY INFORMATION - Jan 18, 2017

Figure 6.1.3.2-1: AC Output Voltage Ripple Characteristics

The operating frequency characteristic as shown in 5.2.1.2-1 requires a correct AC ripple as shown in the Figure 6.1.3.2-1 above (case a) at the pin VG). This characteristic is the recommended AC voltage which is a valid signal form to fulfil $V_{\text{RIPPLE,VG}}$ in the recommended operating conditions chapter.

Characteristics as given in b) are most probable a result of direct inductive coupling between the feedback loop and the changing magnetic field in the inductor L_{LX} . Other potential sources of this type of distortion may be GND distortions caused by changing current flows in the input circuitry or GND loop formed by PGND and the freewheeling diode at LX. Note, that the ripple voltage $V_{VG,DIST}$ is not suited to fulfil the recommended operating conditions $V_{RIPPLE,VG}$. (no mono frequent operation)

This behaviour can potentially be avoided by routing of the feedback signal.

Third case c) is caused by low output capacitance C_{VG} . It does not meet the requirement to have an AC ripple voltage at the output which is in phase to the inductor current. To avoid this it is possible to either increase $R_{ESR,CVG}$ (thus increasing the overall ripple) or to increase C_{VG} . If the voltage change at C_{VG} becomes dominant compared to the signal generated at $R_{ESR,CVG}$ the operating frequency may be a sinusoidal function of L_{LX} and C_{VG} instead of being controlled by E523.52.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

6.1.3.3 Rectification-/Freewheeling Diode Selection

The free-wheeling diode should have a low forward voltage (to increase efficiency) as well as a very low reverse recovery time of typically 10ns and a low junction capacitance.

Parameters like parasitic capacitance as well as longer reverse recovery time may cause additional radiated emission at LX. Choose these parameters as low as possible. Parasitic capacitance of this diode decreases the overall efficiency and causes current spikes when the LX driver turns on, while long reverse recovery delays of the freewheeling diode may unintentionally conduct the LX ESD protection circuit.

For high ambient temperatures and/or high supply voltages at VSUP, ultra-fast bipolar rectifiers may perform better than schottky diodes due to the lower reverse leakage currents and lower junction capacitance. Reverse and forward recovery time of the diode must be taken into account.

6.1.3.4 Initial dimensioning calculation example

 $V_{VSUP,APP,MAX}=48V. \rightarrow L_{LX}=390 \mu H \rightarrow T_{PERIOD,MAX}=2.083 \mu s$ $V_{VSUP,APP,MIN}=24V.$ $I_{LOAD,DC}=100 mA$

$$I_{PP1,48} = \frac{T_{ON,MIN,NOM} \cdot (V_{VSUP,APP,MAX} - V_{VG,NOM})}{L_{LX}} = \frac{500ns \cdot (48V - 11V)}{390\mu H} = 47.4359mA$$

$$I_{PP1,24} = \frac{T_{ON,MIN,NOM} \cdot (V_{VSUP,APP,MAX} - V_{VG,NOM})}{L_{LX}} = \frac{500ns \cdot (24V - 11V)}{390\mu H} = 16.6667mA$$

$$I_{PP2} = \frac{T_{OFF,MIN,NOM} \cdot (V_{VG,NOM} + V_{F,DLX})}{L_{VG}} = \frac{500ns \cdot (11V + 0.8V)}{390\mu H} = 15.1282mA$$

 $I_{L,PP,MAX} = max[I_{PP1,48}, I_{PP1,24}, I_{PP2}] = 47.4359mA$ $I_{L,PP,MIN} = min[I_{PP1,48}, I_{PP1,24}, I_{PP2}] = 15.1282mA$

$$R_{ESR,CVG,MAX} = \frac{V_{RIPPLE,VG,MAX}}{I_{L,PP,MAX}} = \frac{100mV}{47.4359mA} = 2.108\Omega$$

$$R_{ESR,CVG,MIN} = \frac{V_{RIPPLE,VG,MIN}}{I_{L,PP,MIN}} = \frac{20mV}{15.1282mA} = 1.322\Omega$$

$$\rightarrow R_{ESR,CVG} = 1.8\Omega \quad \text{(using E12 series)}$$

 $C_{VG,MIN} \ge \frac{4 \cdot 2.083 \mu s}{1.8\Omega} \ge 4.63 \mu F$ $\rightarrow C_{VG} = 26 \mu F$ (minimum value for bootstrapping.)

6.1.4 Boot-strap Circuit

The bootstrap capacitors C_{BST} transfer their charge to the gates of the external FETs through the high-side drivers. To be on the safe side, their capacitance C_{BST} should be at least an order of magnitude higher than the total gate capacitance of the external high-side FET. For smaller C_{BST} consider the voltage drop during charge distribution. The resulting gate voltage at the external FET V_{Gate} should stay sufficiently high and is governed by the following equation:

$$V_{Gate} = (V_{VG} - V_{Diode}) \cdot \frac{C_{BST}}{C_{BST} + C_{Gate}}$$

with V_{Diode} being the forward voltage of the boostrap diodes D_{BST} and C_{Gate} the gate capacitance of the external FETs.

To reduce inrush currents upon activation of the IC, the boot-strap capacitors are charged through resistor R_{BST} and diode D_{BST} while the motor phase M[n] is at GND potential. R_{BST} should be at least 10 times the series resistance of C_{VG} .

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

For operation at or near 100% duty cycle a number of additional factors have to be considered. The bootstrap capacitors will loose their charge due to the current I_{BSleak} which is the sum of the input current on BST $I_{BST1-3_on}=250\mu A(typ)$, gate leakage, and diode leakage. Maintaining 100% duty cycle longer than

$$t_{100percent} = \frac{C_{BST} \cdot 2V}{I_{BSleak}}$$

may lead to low enhancement at the corresponding high-side switch.

6.1.5 Gate Resistors

Gate resistors act together with the intrinsic gate capacitance of the external power FETs as an RC circuit which slows the rise times of the gate voltage. Slower turn on and turn off of the power FETs reduces the overshoot and ringing of the phase voltage, and also reduces the energy in the higher harmonics of the switching frequency. The disadvantage of slower rise and fall times are an increase of power dissipation during switching and a reduction of efficiency.

It is also possible to modify turn on and turn off slopes independently by placing a reverse conducting diode with a series resistor across the gate resistors.

6.1.6 Amplifier Dimensioning

The calculations for the current measurement path assume the motor current is to be sampled by the analog to digital converter (ADC) input of an external microcontroller. If an external ADC reference input is available, it is recommended to use the VDD output of the E523.52 as ADC reference. If only internal references are available 2.5V is also a good reference level, but it will reduce the measuring range.

Note: Always use a zero current ADC reference measurement with RUN = High before turning the motor on to eliminate offsets introduced by component parameter variations!

The first component to be chosen is the shunt resistor R_{SH} which provides the input voltage for the current measurement path. Its limiting factors are its power dissipation P_{SHmax} and the value of the maximum operational motor current I_{MOTmax} which - in block commutation - defines R_{SH} as:

$$R_{SH} \le \frac{P_{SHmax}}{I_{MOTmax}^2}$$

For sine commutation use the RMS value of I_{MOTmax} for the power calculation!

Power dissipation should for practical reasons not exceed 3W at 85 °C. The chosen shunt resistor must also support the maximum motor current I_{MOTmax} .

The current path gain ASH dimensioning depends on a number of factors:

1. The overcurrent trip threshold $V_{AMP_OUT,OC}$ of the E523.52.

2. The maximum peak current $I_{MOTpeak}$ of the motor which should trigger overcurrent.

3. The input range V_{ADCin} of the sampling ADC

4. If motor current must be measured uni- or bi-directional.

If the ADC sampling range is from 0V to VDD = 3.3V(typ)motor current can be sampled up to the maximum shortcircuit current I_{MOTpeak} of the motor.

PRELIMINARY INFORMATION - Jan 18, 2017

Figure 6.1.6-1: Bi-directional Current Measurement

To make optimum use of the input range of the ADC it is recommended to calculate the network such, that the maximum motor current can still be measured. Calculate the gain as follows:

$$A_{SH} = \frac{V_{REFH}}{2 \cdot I_{MOTmax}} \cdot R_{shunt}$$

and the offset

$$V_{SHoffs} = I_{MOTmax} \cdot R_{shunt} \cdot A_{SH}$$

The resistor gain network with RG = 18kOhm can be calculated as such:

$$R_{FP} = R_{FN} = \frac{R_G}{(A_{SH} - 1)} = \frac{18k\Omega}{(A_{SH} - 1)}$$

In order to place zero motor current in the middle of the full scale range V_{ADC} of the analog digital converter, the voltage offset V_{SHoffs} is applied by populating the offset pullup resistor R_{PP} as:

$$R_{PP} = \frac{V_{DD}}{V_{SHoffs}} \cdot (R_{FN} + R_G) - R_{FN}$$

To calculate the motor current I_{mot} from the voltage V_{ADC} sampled by the microcontroller from AMP_OUT use the following formula:

$$I_{mot} = \frac{\frac{V_{ADC}}{A_{SH}} - V_{DD} \cdot G_P}{R_{SH} \cdot (1 - G_P)}$$
with

with

 $G_P = \frac{R_{FN}}{R_{FN} + R_{PP}}$

the gain of the offset resistor network.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

6.1.7 Layout Considerations

The E523.52 comes in a thermally effective QFN package. It is important to connect the exposed pad of the package to circuit ground and using a ring of vias to have a good thermal connection into the PCB. To prevent the IC package from being lifted by the surface tension of a solder ball forming under the exposed pad, it might be advisable to use a checker board landing area. The metallized area should be between 50% and 75% of the exposed pad area.

The IC GND pin should be connected to the ground plane directly and not through current carrying traces. A power ground island should connect the ground terminal of the motor bypass capacitances C_{VSUP} and $C_{VSUP,CER}$ and the ground terminal of the shunt resistor. GNDP should be connected to the power ground terminal as well. Keep switching traces away from sensitive circuits and current carrying traces as wide as possible.

6.1.8 Switching Power-supply

The switching power supply consists of $C_{VG,CER}$, D_{LX} , L_{LX} , and C_{VG} . The ground connections of these components should be as close together as possible to keep the switching current loop small. Use a small via grid to tie the switching ground to the PCB ground plane. The wire loop from LX through L_{LX} to VG should be short. The connection from C_{VG} to VG is less critical.

6.1.9 Square Law Circuit

The traces connected to the pins BST[1-3], GH[1-3], M[1-3], GL[1-3] and GNDP are considered the gate control circuit. Keep the gate control circuitry traces as short and wide as possible to carry peak currents. Keep the bootstrap components C_{BST} close to the IC.

6.1.10 Current Sensing

The motor current is measured across a shunt resistor in the ground path of the motor. The current sense lines on the shunt side of R_{FN} , R_{FP} MUST be kelvin connected to each end of the shunt resistor and should be routed in parallel to the IC. Do NOT connect R_{FN} to a local ground terminal by the IC. The internal OPAMP is very fast. Place the gain network as close to the IC as possible, to ensure minimum parasitics at the OPAMP pins.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.
E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

7 Package Reference

The device is assembled in a 7x7mm QFN package with 36 pins. The QFN36L7 package outline and dimensions are according JEDEC MO-220 K.

Figure 7-1: Package Outline

Description	Symbol	mm			inch		
Description		min	typ	max	min	typ	max
Package height	A	0.80	0.90	1.00	0.031	0.035	0.039
Stand off	A1	0.00	0.02	0.05	0.000	0.0008	0.002
Thickness of terminal leads, including lead finish	A3	0.20 REF			0.0079 REF		
Width of terminal leads	b	0.25	0.30	0.35	0.010	0.012	0.014
Package length / width	D/E		7.00 BSC			0.276 BSC	-
Length / width of exposed pad	D2 / E2	4.60	4.75	4.90	0.181	0.187	0.193
Lead pitch	e	0.65 BSC			0.026 BSC		
Length of terminal for soldering to substrate	L	0.35	0.40	0.45	0.014	0.016	0.018
Number of terminal positions	N		36			36	

Figure 7-2: Package Dimension Table

Note: The mm values are valid, the inch values contains rounding errors **Note 1:** For assembler specific pin1 identification please see QM-document 08SP0363.xx (Pin 1 Specification)

PRELIMINARY INFORMATION - Jan 18, 2017

8 ESD, Latchup and EMC

8.1 Electro Static Discharge (ESD)

Table 8.1-1: ESD on IC Level, Human Body Model (HBM)

Standard	AEC-Q100-002
Model	Human Body Model
Capacitance	100 pF
Resistance	1,5 kΩ
Minimum withstand Voltage	+/- 2 kV

Table 8.1-2: Optional ESD Test on IC Level for Special Pins

Optional ESD Test	Test equipment similar to AEC-Q100-002
Test point	Pins VSUP, EN to system ground
Capacitance	100 pF
Resistance	1,5 kΩ
Minimum withstand Voltage	+/- 4 kV

Table 8.1-3: ESD on IC Level, Charged Device Model (CDM)

Standard	AEC-Q100-011
Model	Charged Device Model
Resistance	1 Ω
Minimum withstand Voltage	+/- 750 V for edge pins
	+/- 500 V for all other pins
Pulse rise time (10%-90%)	<400 ps

8.2 Latch-up

Latch-up performance is validated according JEDEC standard JESD 78 in its valid revision.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

9 Marking

9.1 Top Side

Table 9.1-1: Top Side

Elmos Logo
E52352A
XXXXU
YWW**

where

Table 9.1-2: Marking of the Devices

Signature	Explanation
E/M/T	Volume production / prototype / test circuit
52352	ELMOS project number
A	ELMOS project revision code
XXXX	Production lot number
U	Assembler code
YWW	Year and week of assembly
* *	ELMOS internal code

9.2 Bottom Side

No marking.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

10 General

10.1 Disclaimer

10.1.1 WARNING - Life Support Applications Policy

ELMOS Semiconductor AG is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilising ELMOS Semiconductor AG products, to observe standards of safety, and to avoid situations in which malfunction or failure of an ELMOS Semiconductor AG Product could cause loss of human life, body injury or damage to property. In development your designs, please ensure that ELMOS Semiconductor AG products are used within specified operating ranges as set forth in the most recent product specifications. ELMOS will not assume neither warranty nor liability for risks resulting from unauthorized use of the product in applications the product is not designated and intended for.

10.1.2 General Disclaimer

Information furnished by ELMOS Semiconductor AG is believed to be accurate and reliable. However, no responsibility is assumed by ELMOS Semiconductor AG for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of ELMOS Semiconductor AG.

ELMOS Semiconductor AG reserves the right to make changes to this document or the products contained therein without prior notice, to improve performance, reliability, or manufacturability.

10.1.3 Application Disclaimer

Circuit diagrams may contain components not manufactured by ELMOS Semiconductor AG, which are included as means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. The information in the application examples has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of ELMOS Semiconductor AG or others.

10.1.4 Copyright

Copyright © 2016 ELMOS

Reproduction, in part or whole, without the prior written consent of ELMOS, is prohibited.

It is not permitted to relay this information to any third party without the written authorisation of ELMOS Semiconductor AG. Violation will cause indemnities.

All rights particularly with regard to patent application and utility model application are reserved.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

11 Storage, Handling, Packing and Shipping

11.1 Storage

Storage conditions should not exceed those given in Chapter 3.1 Absolute Maximum Ratings. The Moisture Sensitivity Level is specified according to MSL3 (JEDEC J-STD-020 in its valid revision).

11.2 Handling

Devices are sensitive to damage by Electrostatic Discharge (ESD) and should only be handled at an ESD protected workstation.

Handling conditions should not exceed those given in Chapter 3.1 Absolute Maximum Ratings.

11.3 Packing

Material shall be packed for shipment as follows:

- Tape-on-Reel
- Drybag for MPC samples
- Every reel respectively drybag will be packed in a packing carton. Each packing carton will be marked and sealed by using the standard label for packings.

11.4 Shipping

Each delivery shall be accompanied by the following:

- Certificate of conformance to the specification
- Delivery note

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

12 Record of Revisions

Table 12-1: Record of Revisions

Chapter	Rev.	Description of change	Date	Released
all	00	Initial revision	10.11.2015	JOKR/ZOE
all	01	General revision including the microcontroller and motor driver datasheet	16.01.2017	TKL

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

13 Contact Information

Headquarters Elmos Semiconductor AG			
Heinrich-Hertz-Str. 1 • D-44227 Dortmund (Germany)	[™] : +492317549100	⊠: sales-germany@elmos.com	Www.elmos.com
Sales and Application Support Office North America Elmos NA. Inc.			
32255 Northwestern Highway • Suite 220 Farmington Hills MI 48334 (USA)	營: +12488653200	⊠: sales-usa@elmos.com	
Sales and Application Support Office China Elmos Semiconductor Technology (Shanghai) Co., Ltd. Unit 16B, 16F Zhao Feng World Trade Building, No. 369 Jiang Su Road, Chang Ning District, Shanghai, PR China, 200050	營: +86216210 0908	⊠: sales-china@elmos.com	
Sales and Application Support Office Korea			
Elmos Korea B-1006, U-Space 2, 670 Daewangpangyo-ro, Sampyoung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, 13494 Korea	轡: +82317141131	⊠: sales-korea@elmos.com	
Sales and Application Support Office Japan Elmos Japan K.K.			
3-20-9 Shibaura, Minato-ku,			
Tokyo 108-0023 Japan	2 +81334517101	⊠: sales-japan@elmos.com	
Sales and Application Support Office Singapore Elmos Semiconductor Singapore Pte Ltd. 3A International Business Park			
#09-13 ICON@IBP • 609935 Singapore	: +65 6908 1261	\boxtimes : sales-singapore@elmos.com	

© Elmos Semiconductor AG, 2017. Reproduction, in part or whole, without the prior written consent of Elmos Semiconductor AG, is prohibited.

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

14 Index

Table of Content

Features	1
Applications	1
Brief functional description	1
Ordering information.	1
Typical Application	1
1 Package and Pinout	2
1.1 Package Pinout	2
1.2 Pin Description	
2 Block Diagram	4
3 Operating Conditions	5
3.1 Absolute Maximum Ratings	5
3.2 Becommended Operating Conditions	۵
4 Detailed Electrical Specification	0 Q
4 Detailed Electrical Specification	0
4.1 System Current Concumption	0
4.1.1 System Current Consumption	0
4.2 Gale Driver	0
4.2.1 Power Supply	8
	8
	9
4.2.2 Power FET Gate Drivers	9
4.2.3 The Control Inputs	10
4.2.3.1 Enable Pin	10
4.2.3.2 Internal Control Ports.	10
4.2.4 BEMF Detection.	10
4.2.5 Current Sense Amplifier / Overcurrent Detection	10
4.2.6 Monitoring and Safety Functions.	11
4.2.6.1 Temperature Monitoring and Over-Temperature Detection	11
4.3 Motor Control Unit	11
4.3.1 Analog Part	11
4.3.1.1 Core Supply Regulator	11
4.3.1.2 Oscillators and Reset	11
4.3.1.2.1 Power On Reset	11
4.3.1.2.2 Brownout Detection	11
4.3.1.2.3 System Clock RC Oscillator	11
4.3.1.2.4 Watchdog Clock RC Oscillator	12
4.3.1.2.5 NRST debouncer	12
4.3.1.3 SAR-ADC	12
4.3.1.4 ADC Multiplexer	13
4.3.1.5 IO Port Characteristics	13
5 Functional Description	14
5.1 System Overview	14
5.1.1 Die to Die Interface	14
5.1.2 System Power Consumption	15
5.1.3 Software Development and Programming	16
5.1.3.1 Programming Interface	16
5.2 Gate Driver	17
5.2.1 Power Supply	17
5.2.1.1 Standby, Wake-up and Shutdown	17
5.2.1.2 DC-DC Buck Converter	19
5.2.1.3 VDD Supply	19
5.2.2 Power FET Gate Drivers	19
5.2.2.1 Block Diagram	20
5	-

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

5.2.2.2 Short-Circuit Protection	20
5.2.2.3 Behaviour in STANDBY and SLEEP mode	20
5.2.3 The Control Inputs	
5.2.3.1 Enable Pin	
5.2.3.2 Internal Control Ports	
5 2 4 BEME Detection	21
5.2.5 Current Sense Amplifier / Overcurrent Detection	21
5.2.6 Monitoring and Safety Functions	21 22
5.2.6 1 VG Monitoring / Under Voltago Dotection	 סס
5.2.6.2 Temperature Manitoring and Over Temperature Detection	 ממ
5.2.6.2 Cuoreurrent/Est abort sireuit	22 ממ
5.2.6.5 Overcurrent/ret short-circuit	∠ں ^^
5.2.6.4 VDD UNUEIVOILAGE	23
5.3 Motor Control Unit	24
5.3.1.1 Core Supply Regulator	
5.3.1.2 Oscillators and Reset	
5.3.1.2.1 Power On Reset	24
5.3.1.2.2 Brownout Detection	24
5.3.1.2.3 System Clock RC Oscillator	24
5.3.1.2.4 Watchdog Clock RC Oscillator	24
5.3.1.2.5 NRST debouncer	24
5.3.1.3 SAR-ADC	24
5.3.1.4 ADC Multiplexer	25
5.3.1.5 IO Port Characteristics	25
5.3.2 Digital Part	25
5.3.2.1 Base Addresses	
5.3.2.2 Memory IP's	
5.3.2.2.1 FLASH	.26
53222 System BOM (SYS_BOM)	26
5 3 2 2 3 SBAM	26
5.3.2.2.4 Memory Access Protection	26
5.3.2.3 System Start-up	26
5 3 2 4 CPU - H430	20 27
5.2.2.4 Of 0 - 11400	، ح رک
5.3.2.4.1 OF OTTEVISIERS	
5.2.4.2 Addressing Modes	
5.2.4.3 Instruction Cycle Counte	30
5.3.2.4.4 Instruction Cycle Counts	
5.3.2.4.5 JTAG Debug Internace	
5.3.2.5 SUD Parts	
5.3.2.5.1 Vector Interrupt Control Module (VIC)	
5.3.2.5.2 Watchdog Module (WDOG)	
5.3.2.5.3 Extended Multiplier Module (H430_MUL)	4/
5.3.2.5.4 Divider Module (DIVIDER)	
5.3.2.5.5 Memory Protection Module (MEM_PROT)	
5.3.2.5.6 System State Module (SYS_STATE)	63
5.3.2.5.7 IO MUX Control Module (IOMUX_CTRL)	71
5.3.2.5.8 FLASH Control Module (FLASH_CTRL)	78
5.3.2.5.9 SPI Module (SPI)	83
5.3.2.5.10 LIN-SCI Module (SCI)	89
5.3.2.5.11 GPIO Module (GPIO)	102
5.3.2.5.12 Capture Compare Timer Module (CCTIMER)	105
5.3.2.5.13 ADC Control Module (ADC_CTRL)	112
5.3.2.5.14 PRE PWM Module (PRE_PWM)	125
5.3.2.5.15 PWM Module (PWMN)	144
5.4 System Errors	169
-	

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

PRELIMINARY INFORMATION - Jan 18, 2017

5.4.1 Motor driver errors	169
5.4.2 Microcontroller errors	169
6 Typical Application Circuit	171
6.1 Component Selection	173
6.1.1 Enable Threshold and Timing	173
6.1.2 Supply Filtering	173
6.1.3 The Step-Down Supply	174
6.1.3.1 L _{LX} Inductor selection	174
6.1.3.2 Cvg capacitor selection	175
6.1.3.3 Rectification-/Freewheeling Diode Selection	177
6.1.3.4 Initial dimensioning calculation example	177
6.1.4 Boot-strap Circuit	177
6.1.5 Gate Resistors	178
6.1.6 Amplifier Dimensioning	178
6.1.7 Layout Considerations	180
6.1.8 Switching Power-supply	180
6.1.9 Square Law Circuit	180
6.1.10 Current Sensing	
7 Package Reference	181
8 ESD, Latchup and EMC	
8.1 Electro Static Discharge (ESD)	182
8.2 Latch-up	182
9 Marking	183
9.1 Top Side	
9.2 Bottom Side	183
10 General	184
10.1 Disclaimer	184
10.1.1 WARNING - Life Support Applications Policy	184
10.1.2 General Disclaimer	184
10.1.3 Application Disclaimer	184
10.1.4 Copyright	184
11 Storage, Handling, Packing and Shipping	185
11.1 Storage	185
11.2 Handling	
11.3 Packing	185
11.4 Shipping	185
12 Record of Revisions	
13 Contact Information	
14 Index	188
Illustration Index	
Figure 1: Typical application	1
Figure 1.1-1: Packago Pinout	າ າ
Figure 2-1: Block Diagram	ے۲ ۸
Figure 5.1.1.1: Internal Interconnecte	4
Figure 5.1.2-1: Power dissipation of DC/DC converter versus Vbat	13
Figure 5.2.1.1-1: Wake-up and Shutdown Bohaviour	10 18
Figure 5.2.1.1-1. Wake-up and Shutdown Denaviou	10
Figure 5.2.1.1-2. Oystern State Diagram	۱۵ ۱۵
Figure 5.2.1.2 1: Bobb switching requercy vs v voor	רז9 ∩כ
Figure 5.2.2.1 Rlock Diagram of the REME Detection	20 01
Figure 5.2.6.2-1: Over-Temperature Indication and Shut Down	רכ ו∠
Figure 5.3.2.3-1: boot code flow chart	23 97
Figure 5.3.2.4-1: H430 Environment Example	27 29
Figure 5.3.2.4 1.11400 Environment Example	2 <i>1</i>

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.

E523.52

PRELIMINARY INFORMATION - Jan 18, 2017

Figure 5.3.2.4.4-1: Cycle Count Table	38
Figure 5.3.2.5.1-1: VIC logic structure	40
Figure 5.3.2.5.1-2: Two stage interrupt system structure	40
Figure 5.3.2.5.2-1: Structure	44
Figure 5.3.2.5.2-2: Timing	45
Figure 5.3.2.5.3-1: Multiplier Structure	48
Figure 5.3.2.5.7.2-1: operating environment	71
Figure 5.3.2.5.7.8-1: 523.05 IO MUX setup example	78
Figure 5.3.2.5.10-1: SCI block diagram	90
Figure 5.3.2.5.11-1: Structure	102
Figure 5.3.2.5.12-1: Structure	106
Figure 5.3.2.5.13-1: SAR ADC Control Operating Environment	112
Figure 5.3.2.5.14.3-1: Module block diagram	126
Figure 5.3.2.5.14.8-1: PRE_PWM timing example	133
Figure 5.3.2.5.14.9-1: Scale and limit logic	138
Figure 5.3.2.5.15.3-1: Module Block Diagram	146
Figure 5.3.2.5.15.7-1: PWM period counter mode dependent CNT_MAX reload behavior (middle_rl = 0)	150
Figure 5.3.2.5.15.7-2: PWM period counter mode dependent CNT_MAX reload behavior (middle_rl = 1)	151
Figure 5.3.2.5.15.8-1: count mode and compare mode dependent PS waveform examples	154
Figure 5.3.2.5.15.10-1: dead time insertion state machine	166
Figure 5.3.2.5.15.10-2: dead time modes	166
Figure 6-1: Typical Operating Circuit	171
Figure 6.1.3.2-1: AC Output Voltage Ripple Characteristics	176
Figure 6.1.6-1: Bi-directional Current Measurement	179
Figure 7-1: Package Outline	181
Figure 7-2: Package Dimension Table	181

This document contains information on a pre-production product. Elmos Semiconductor AG reserves the right to change specifications and information herein without notice.