NTB0104 Dual supply translating transceiver; auto direction sensing; 3-state Rev. 4.1 — 17 October 2024 Product data sheet ## 1 General description The NTB0104 is a 4-bit, dual supply translating transceiver with auto direction sensing, that enables bidirectional voltage level translation. It features two 4-bit input-output ports (An and Bn), one output enable input (OE) and two supply pins ($V_{CC(A)}$ and $V_{CC(B)}$). $V_{CC(A)}$ can be supplied at any voltage between 1.2 V and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.65 V and 5.5 V, making the device suitable for translating between any of the low voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V and 5.0 V). Pins An and OE are referenced to $V_{CC(A)}$ and pins Bn are referenced to $V_{CC(B)}$. A LOW level at pin OE causes the outputs to assume a high-impedance OFF-state. This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down. Dual supply translating transceiver; auto direction sensing; 3-state ### 2 Features and benefits - Wide supply voltage range: - $V_{CC(A)}$: 1.2 V to 3.6 V and $V_{CC(B)}$: 1.65 V to 5.5 V - I_{OFF} circuitry provides partial Power-down mode operation - Inputs accept voltages up to 5.5 V - ESD protection: - HBM JESD22-A114E Class 2 exceeds 2500 V for A port - HBM JESD22-A114E Class 3B exceeds 15000 V for B port - MM JESD22-A115-A exceeds 200 V - CDM JESD22-C101E exceeds 1500 V (For NTB0104UK 1000 V) - Latch-up performance exceeds 100 mA per JESD 78B Class II - · Multiple package options - Specified from -40 °C to +85 °C and -40 °C to +125 °C Dual supply translating transceiver; auto direction sensing; 3-state # 3 Ordering information Table 1. Ordering information | Type number | Topside | Package | | | | | | | | | |-------------|---------|----------|--|-----------|--|--|--|--|--|--| | | marking | Name | Description | Version | | | | | | | | NTB0104BQ | B0104 | DHVQFN14 | plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 × 3 × 0.85 mm | SOT762-1 | | | | | | | | NTB0104GU12 | t4 | XQFN12 | plastic, extremely thin quad flat package; no leads; 12 terminals; body 1.70 × 2.0 × 0.50 mm | SOT1174-1 | | | | | | | | NTB0104UK | t04 | WLCSP12 | wafer level chip-size package, 12 bumps; body 1.20 × 1.60 × 0.56 mm. (Backside Coating included) | NTB0104UK | | | | | | | # 3.1 Ordering options Table 2. Ordering options | Type number | Orderable part number | Package | Packing method | Minimum order quantity | Temperature | |--------------------------|-----------------------|----------|--|------------------------|--------------------------------------| | NTB0104BQ | NTB0104BQ,115 | DHVQFN14 | REEL 7" Q1/T1
*STANDARD MARK
SMD | 3000 | T _{amb} = -40 °C to +125 °C | | NTB0104GU12 | NTB0104GU12,115 | XQFN12 | REEL 7" Q1/T1
*STANDARD MARK
SMD | 4000 | T _{amb} = -40 °C to +125 °C | | NTB0104UK ^[1] | NTB0104UK,012 | WLCSP12 | REEL 7" Q1/T1
*SPECIAL MARK
CHIPS DP | 5000 | T _{amb} = -40 °C to +125 °C | ^[1] Discontinued with last time buy date of 3/22/2024 and last time ship date of 9/27/2024. Dual supply translating transceiver; auto direction sensing; 3-state # 4 Functional diagram Dual supply translating transceiver; auto direction sensing; 3-state # 5 Pinning information ### 5.1 Pinning 1. This is not a supply pin, the substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad, however if it is soldered the solder land should remain floating or be connected to GND Figure 2. Pin configuration DHVQFN14 (SOT762-1) Figure 3. Pin configuration XQFN12 (SOT1174-1) NTB0104 ### Dual supply translating transceiver; auto direction sensing; 3-state Transparent top view aaa-055611 Figure 5. Ball mapping for WLCSP12 ## 5.2 Pin description Table 3. Pin description | Symbol | Pin | | Ball | Description | |--------------------|----------------|-------------|----------------|--| | | SOT762-1 | SOT1174-1 | WLCSP12 | | | V _{CC(A)} | 1 | 1 | B2 | supply voltage A | | A1, A2, A3, A4 | 2, 3, 4, 5 | 2, 3, 4, 5 | A3, B3, C3, D3 | data input or output (referenced to V _{CC(A)}) | | n.c. | 6, 9 | - | - | not connected | | GND | 7 | 6 | D2 | ground (0 V) | | OE | 8 | 12 | C2 | output enable input (active HIGH; referenced to $V_{\text{CC(A)}}$) | | B4, B3, B2, B1 | 10, 11, 12, 13 | 7, 8, 9, 10 | D1, C1, B1, A1 | data input or output (referenced to V _{CC(B)}) | | V _{CC(B)} | 14 | 11 | A2 | supply voltage B | Dual supply translating transceiver; auto direction sensing; 3-state # **Functional description** # Table 4. Function table^[1] | Supply voltage | | Input | Input/output | | |-----------------------------|-----------------------|-------|-----------------|-----------------| | V _{CC(A)} | V _{CC(B)} OE | | An | Bn | | 1.2 V to V _{CC(B)} | 1.65 V to 5.5 V | L | Z | Z | | 1.2 V to V _{CC(B)} | 1.65 V to 5.5 V | Н | input or output | output or input | | GND ^[2] | GND ^[2] | X | Z | Z | $[\]label{eq:Hamiltonian} H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = don't \ care; \ Z = high-impedance \ OFF-state.$ When either $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into power-down mode. Dual supply translating transceiver; auto direction sensing; 3-state # **Limiting values** Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | Min | Max | Unit | |--------------------|-------------------------|--|-----------|------|------------------------|------| | V _{CC(A)} | supply voltage A | | | -0.5 | +6.5 | V | | V _{CC(B)} | supply voltage B | | | -0.5 | +6.5 | V | | VI | input voltage | | [1] | -0.5 | +6.5 | V | | Vo | output voltage | Active mode | [1][2][3] | -0.5 | V _{CCO} + 0.5 | V | | | | Power-down or 3-state mode | [1] | -0.5 | +6.5 | V | | I _{IK} | input clamping current | V _I < 0 V | | -50 | - | mA | | I _{OK} | output clamping current | V _O < 0 V | | -50 | - | mA | | Io | output current | $V_O = 0 \text{ V to } V_{CCO}$ | [2] | - | ±50 | mA | | I _{CC} | supply current | I _{CC(A)} or I _{CC(B)} | | - | 100 | mA | | I _{GND} | ground current | | | -100 | - | mA | | T _{stg} | storage temperature | | | -65 | +150 | °C | | P _{tot} | total power dissipation | T _{amb} = -40 °C to +125 °C | [4] | - | 250 | mW | The minimum input and minimum output voltage ratings may be exceeded if the input and output current ratings are observed. ^[2] [3] [4] V_{CCO} is the supply voltage associated with the output. V_{CCO} + 0.5 V should not exceed 6.5 V. For DHVQFN14 packages: above 60 °C the value of Ptot derates linearly with 4.5 mW/K. For XQFN12 packages: above 128 °C the value of P_{tot} derates linearly with 11.5 mW/K. Dual supply translating transceiver; auto direction sensing; 3-state # 8 Recommended operating conditions Table 6. Recommended operating conditions^{[1][2]} | Symbol | Parameter | Conditions | Min | Max | Unit | |-------------------------------|-------------------------------------|---|------|------|------| | V _{CC(A)} | supply voltage A | | 1.2 | 3.6 | V | | V _{CC(B)} | supply voltage B | | 1.65 | 5.5 | V | | VI | input voltage | | 0 | 5.5 | V | | V _O output voltage | | Power-down or 3-state mode;
V _{CC(A)} = 1.2 V to 3.6 V; V _{CC(B)}
= 1.65 V to 5.5 V | | | | | | | A port | 0 | 3.6 | V | | | | B port | 0 | 5.5 | V | | T _{amb} | ambient temperature | | -40 | +125 | °C | | Δt/ΔV | input transition rise and fall rate | V _{CC(A)} = 1.2 V to 3.6 V; V _{CC(B)}
= 1.65 V to 5.5 V | - | 40 | ns/V | ^[1] The A and B sides of an unused I/O pair must be held in the same state, both at V_{CCI} or both at GND. ^[2] $V_{CC(A)}$ must be less than or equal to $V_{CC(B)}$. Dual supply translating transceiver; auto direction sensing; 3-state ### Static characteristics Table 7. Typical static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C. | Symbol | Parameter | Conditions | | Min | Тур | Max | Unit | |------------------|--|---|-----|-----|------|-----|------| | V _{OH} | HIGH-level output voltage | A port; $V_{CC(A)} = 1.2 \text{ V}$; $I_O = -20 \mu\text{A}$ | | - | 1.1 | - | V | | V _{OL} | LOW-level output voltage | A port; $V_{CC(A)} = 1.2 \text{ V}$; $I_O = 20 \mu\text{A}$ | | - | 0.09 | - | V | | Iı | input leakage
current | OE input; V_1 = 0 V to 3.6 V; $V_{CC(A)}$ = 1.2 V to 3.6 V; $V_{CC(B)}$ = 1.65 V to 5.5 V | | - | - | ±1 | μА | | I _{OZ} | OFF-state output current | A or B port; $V_O = 0 \text{ V to } V_{CC(A)}$; $V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V}$; $V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | [1] | - | - | ±1 | μA | | I _{OFF} | power-off leakage current A port; V_I or $V_O = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0$ V to 5.5 V | | | - | - | ±1 | μA | | | | B port; V_1 or V_0 = 0 V to 5.5 V; $V_{CC(B)}$ = 0 V; $V_{CC(A)}$ = 0 V to 3.6 V | | - | - | ±1 | μΑ | | I _{CC} | supply current | $V_I = 0 \text{ V or } V_{CCI}; I_O = 0 \text{ A}$ | [2] | | | | | | | | I _{CC(A)} ; V _{CC(A)} = 1.2 V; V _{CC(B)} = 1.65 V to 5.5 V | | - |
0.05 | - | μA | | | | I _{CC(B)} ; V _{CC(A)} = 1.2 V; V _{CC(B)} = 1.65 V to 5.5 V | | - | 3.3 | - | μA | | | | I _{CC(A)} + I _{CC(B)} ; V _{CC(A)} = 1.2 V; V _{CC(B)} = 1.65 V to 5.5 V | | - | 3.5 | - | μA | | Cı | input
capacitance | OE input; $V_{CC(A)} = 1.2 \text{ V to } 3.6 \text{ V}; V_{CC(B)} = 1.65 \text{ V to } 5.5 \text{ V}$ | | - | 2.8 | - | pF | | C _{I/O} | input/output | A port; V _{CC(A)} = 1.2 V to 3.6 V; V _{CC(B)} = 1.65 V to 5.5 V | | - | 4.0 | - | pF | | | capacitance | B port; V _{CC(A)} = 1.2 V to 3.6 V; V _{CC(B)} = 1.65 V to 5.5 V | | - | 7.5 | - | pF | V_{CCO} is the supply voltage associated with the output. V_{CCI} is the supply voltage associated with the input. Table 8. Typical supply current At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C. | $V_{CC(A)}$ | V _{CC(B)} | V _{CC(B)} | | | | | | | | | | | |-------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----|--|--|--| | | 1.8 V | | 2.5 V | 2.5 V | | 3.3 V | | | | | | | | | I _{CC(A)} | I _{CC(B)} | | | | | | 1.2 V | 10 | 10 | 10 | 10 | 10 | 20 | 10 | 1050 | nA | | | | | 1.5 V | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 650 | nA | | | | | 1.8 V | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 350 | nA | | | | | 2.5 V | - | - | 10 | 10 | 10 | 10 | 10 | 40 | nA | | | | | 3.3 V | - | - | - | - | 10 | 10 | 10 | 10 | nA | | | | Dual supply translating transceiver; auto direction sensing; 3-state Table 9. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | -40 °C to | +85 °C | -40 °C to | +125 °C | Uni | |---------------------------|--------------------------|---|-----|------------------------|----------------------|------------------------|----------------------|-----| | | | | | Min | Max | Min | Max | | | V _{IH} | HIGH-level | A or B port and OE input | [1] | | | | | | | | input voltage | V _{CC(A)} = 1.2 V to 3.6 V; V _{CC(B)}
= 1.65 V to 5.5 V | | 0.65V _{CCI} | - | 0.65V _{CCI} | - | V | | V _{IL} | LOW-level | A or B port and OE input | [1] | | | | | | | | input voltage | V _{CC(A)} = 1.2 V to 3.6 V; V _{CC(B)}
= 1.65 V to 5.5 V | | - | 0.35V _{CCI} | - | 0.35V _{CCI} | V | | V _{OH} | HIGH-level | A or B port; $I_0 = -20 \mu A$ | [2] | | | | | | | | output voltage | A port; V _{CC(A)} = 1.4 V to 3.6 V | | V _{CCO} - 0.4 | - | V _{CCO} - 0.4 | - | V | | | | B port; V _{CC(B)} = 1.65 V to 5.5 V | | V _{CCO} - 0.4 | - | V _{CCO} - 0.4 | - | V | | V _{OL} LOW-level | | A or B port; $I_O = 20 \mu A$ | [2] | | | | | | | | output voltage | A port; V _{CC(A)} = 1.4 V to 3.6 V | | - | 0.4 | - | 0.4 | V | | | | B port; V _{CC(B)} = 1.65 V to 5.5 V | | - | 0.4 | - | 0.4 | V | | R _{O(ser)} | serial output | A port | | 3 | 5 | 3 | 5 | kΩ | | | resistance | B port | | 3 | 5 | 3 | 5 | kΩ | | l _l | input leakage
current | OE input; V _I = 0 V to 3.6 V; V _{CC(A)}
= 1.2 V to 3.6 V; V _{CC(B)} = 1.65 V to
5.5 V | | - | ±2 | - | ±5 | μA | | l _{oz} | OFF-state output current | A or B port; V _O = 0 V or V _{CCO} ;
V _{CC(A)} = 1.2 V to 3.6 V; V _{CC(B)} =
1.65 V to 5.5 V | [2] | - | ±2 | - | ±10 | μA | | I _{OFF} | power-off
leakage | A port; V _I or V _O = 0 V to 3.6 V;
V _{CC(A)} = 0 V; V _{CC(B)} = 0 V to 5.5 V | | - | ±2 | - | ±10 | μA | | | current | B port; V _I or V _O = 0 V to 5.5 V;
V _{CC(B)} = 0 V; V _{CC(A)} = 0 V to 3.6 V | | - | ±2 | - | ±10 | μΑ | | I _{CC} | supply current | $V_I = 0 \text{ V or } V_{CCI}; I_O = 0 \text{ A}$ | [1] | | | | | | | | | I _{CC(A)} | | | | | | | | | | OE = LOW; V _{CC(A)} = 1.4 V to
3.6 V; V _{CC(B)} = 1.65 V to 5.5 V | | - | 5 | - | 15 | μA | | | | OE = HIGH; $V_{CC(A)}$ = 1.4 V to 3.6 V; $V_{CC(B)}$ = 1.65 V to 5.5 V | | - | 5 | - | 20 | μA | | | | $V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$ | | - | 2 | - | 15 | μΑ | | | | $V_{CC(A)} = 0 \text{ V}; V_{CC(B)} = 5.5 \text{ V}$ | | - | -2 | - | -15 | μΑ | | | | I _{CC(B)} | | | | | | | | | | OE = LOW; V _{CC(A)} = 1.4 V to
3.6 V; V _{CC(B)} = 1.65 V to 5.5 V | | - | 5 | - | 15 | μΑ | | | | OE = HIGH; V _{CC(A)} = 1.4 V to
3.6 V; V _{CC(B)} = 1.65 V to 5.5 V | | - | 5 | - | 20 | μΑ | | | | V _{CC(A)} = 3.6 V; V _{CC(B)} = 0 V | | - | -2 | - | -15 | μΑ | | | | V _{CC(A)} = 0 V; V _{CC(B)} = 5.5 V | | - | 2 | - | 15 | μΑ | NTB0104 All information provided in this document is subject to legal disclaimers. ### Dual supply translating transceiver; auto direction sensing; 3-state Table 9. Static characteristics...continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | -40 °C to | +85 °C | -40 °C to | Unit | | |--------|-----------|--|--|-----------|--------|-----------|------|----| | | | | | Min | Max | Min | Max | | | | | $I_{CC(A)} + I_{CC(B)}$ | | | | | | | | | | V _{CC(A)} = 1.4 V to 3.6 V; V _{CC(B)}
= 1.65 V to 5.5 V | | - | 10 | - | 40 | μΑ | ^[1] V_{CCI} is the supply voltage associated with the input. ^[2] V_{CCO} is the supply voltage associated with the output. Dual supply translating transceiver; auto direction sensing; 3-state # 10 Dynamic characteristics Table 10. Typical dynamic characteristics for temperature 25 °C^[1] Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 8</u>; for waveforms see <u>Figure 6</u> and <u>Figure 7</u>. | Symbol | Parameter | Conditions | | | Vc | C(B) | | Unit | |------------------------|---------------------------------|---------------------------|-----|-------|-------|-------|-------|------| | | | | - | 1.8 V | 2.5 V | 3.3 V | 5.0 V | | | V _{CC(A)} = 1 | 1.2 V; T _{amb} = 25 °C | | | | | | | | | t _{pd} | propagation delay | A to B | | 5.9 | 4.8 | 4.4 | 4.2 | ns | | | | B to A | | 5.6 | 4.8 | 4.5 | 4.4 | ns | | t _{en} | enable time | OE to A, B | | 0.5 | 0.5 | 0.5 | 0.5 | μs | | t _{dis} | disable time | OE to A; no external load | [2] | 8.3 | 8.3 | 8.3 | 8.3 | ns | | | | OE to B; no external load | [2] | 10.4 | 9.4 | 9.3 | 8.8 | ns | | | | OE to A | | 81 | 69 | 83 | 68 | ns | | | | OE to B | | 81 | 69 | 83 | 68 | ns | | t _t | transition time | A port | | 4.0 | 4.0 | 4.1 | 4.1 | ns | | | | B port | | 2.6 | 2.0 | 1.7 | 1.4 | ns | | t _{sk(o)} | output skew time | between channels | [3] | 0.2 | 0.2 | 0.2 | 0.2 | ns | | t _W | pulse width | data inputs | | 15 | 13 | 13 | 13 | ns | | f _{data} | data rate | | | 70 | 80 | 80 | 80 | Mbps | $[\]begin{array}{ll} \text{[1]} & t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}. \\ & t_{en} \text{ is the same as } t_{PZL} \text{ and } t_{PZH}. \end{array}$ Table 11. Dynamic characteristics for temperature range -40 °C to +85 °C^[1] Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 8</u>; for wave forms see <u>Figure 6</u> and <u>Figure 7</u>. | Symbol | Parameter | Conditions | | | | | Vcc | (B) | | | | Unit | |----------------------|---------------|---------------------------|-----|----------------|------|------------------|------|---------------|------|---------------|------|------| | | | | | 1.8 V ± 0.15 V | | 2.5 V
± 0.2 V | | 3.3 V ± 0.3 V | | 5.0 V ± 0.5 V | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | V _{CC(A)} = | 1.5 V ± 0.1 V | | | | | | | | | | | | | t _{pd} | propagation | A to B | | 1.4 | 12.9 | 1.2 | 10.1 | 1.1 | 10.0 | 0.8 | 9.9 | ns | | d | delay | B to A | | 0.9 | 14.2 | 0.7 | 12.0 | 0.4 | 11.7 | 0.3 | 13.7 | ns | | t _{en} | enable time | OE to A, B | | - | 1.0 | - | 1.0 | - | 1.0 | - | 1.0 | μs | | t _{dis} | disable time | OE to A; no external load | [2] | 1.0 | 12.9 | 1.0 | 12.9 | 1.0 | 12.9 | 1.0 | 12.9 | ns | | | | OE to B; no external load | [2] | 1.0 | 18.7 | 1.0 | 15.8 | 1.0 | 15.1 | 1.0 | 14.4 | ns | | | | OE to A | | - | 320 | - | 260 | - | 260 | - | 280 | ns | | | | OE to B | | - | 200 | - | 200 | - | 200 | - | 200 | ns | t_{dis} is the same as t_{PLZ} and t_{PHZ} . t, is the same as t_{THL} and t_{TLH} [2] Delay between OE going LOW and when the outputs are actually disabled. ^[3] Skew between any two outputs of the same package switching in the same direction. Dual supply translating transceiver; auto direction sensing; 3-state Table 11. Dynamic characteristics for temperature range -40 °C to +85 °C^[1]...continued Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 8</u>; for wave forms see <u>Figure 6</u> and <u>Figure 7</u>. | Symbol | Parameter | Conditions | | | | | Vcc | C(B) | | | | Unit | |----------------------|---------------------|---------------------------|-----|---------|--------|-----|-------------|---------|---------|-------|---------|------| | | | | | 1.8 V ± | 0.15 V | | 5 V
.2 V | 3.3 V : | ± 0.3 V | 5.0 V | ± 0.5 V | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _t | transition | A port | | 0.9 | 5.1 | 0.9 | 5.1 | 0.9 | 5.1 | 0.9 | 5.1 | ns | | | time | B port | | 0.9 | 4.7 | 0.6 | 3.2 | 0.5 | 2.5 | 0.4 | 2.7 | ns | | t _{sk(o)} | output skew
time | between channels | [3] | - | 0.5 | - | 0.5 | - | 0.5 | - | 0.5 | ns | | t _W | pulse width | data inputs | | 25 | - | 25 | - | 25 | - | 25 | - | ns | | f _{data} | data rate | | | - | 40 | - | 40 | - | 40 | - | 40 | Mbps | | V _{CC(A)} = | 1.8 V ± 0.15 V | | | | | | | | | | | | | t _{pd} | propagation | A to B | | 1.6 | 11.0 | 1.4 | 7.7 | 1.3 | 6.8 | 1.2 | 6.5 | ns | | | delay | B to A | | 1.5 | 12.0 | 1.3 | 8.4 | 1.0 | 7.6 | 0.9 | 7.1 | ns | | t _{en} | enable time | OE to A, B | | - | 1.0 | - | 1.0 | - | 1.0 | - | 1.0 | μs | | t _{dis} | disable time | OE to A; no external load | [2] | 1.0 | 11.7 | 1.0 |
11.7 | 1.0 | 11.7 | 1.0 | 11.7 | ns | | | | OE to B; no external load | [2] | 1.0 | 16.9 | 1.0 | 14.5 | 1.0 | 13.7 | 1.0 | 12.7 | ns | | | | OE to A | | - | 260 | - | 230 | - | 230 | - | 230 | ns | | | | OE to B | | - | 200 | - | 200 | - | 200 | - | 200 | ns | | t _t | transition | A port | | 0.8 | 4.1 | 0.8 | 4.1 | 0.8 | 4.1 | 0.8 | 4.1 | ns | | | time | B port | | 0.9 | 4.7 | 0.6 | 3.2 | 0.5 | 2.5 | 0.4 | 2.7 | ns | | t _{sk(o)} | output skew
time | between channels | [3] | - | 0.5 | - | 0.5 | - | 0.5 | - | 0.5 | ns | | t _W | pulse width | data inputs | | 20 | - | 17 | - | 17 | - | 17 | - | ns | | f _{data} | data rate | | | - | 49 | - | 60 | - | 60 | - | 60 | Mbps | | V _{CC(A)} = | 2.5 V ± 0.2 V | | | | | | | | | | 1 | | | t _{pd} | propagation | A to B | | - | - | 1.1 | 6.3 | 1.0 | 5.2 | 0.9 | 4.7 | ns | | | delay | B to A | | - | - | 1.2 | 6.6 | 1.1 | 5.1 | 0.9 | 4.4 | ns | | t _{en} | enable time | OE to A, B | | - | - | - | 1.0 | - | 1.0 | - | 1.0 | μs | | t _{dis} | disable time | OE to A; no external load | [2] | - | - | 1.0 | 9.7 | 1.0 | 9.7 | 1.0 | 9.7 | ns | | | | OE to B; no external load | [2] | - | - | 1.0 | 12.9 | 1.0 | 12.0 | 1.0 | 11.0 | ns | | | | OE to A | | - | - | - | 200 | - | 200 | - | 200 | ns | | | | OE to B | | - | - | - | 200 | - | 200 | - | 200 | ns | | t _t | transition | A port | | - | - | 0.7 | 3.0 | 0.7 | 3.0 | 0.7 | 3.0 | ns | | | time | B port | | - | - | 0.7 | 3.2 | 0.5 | 2.5 | 0.4 | 2.7 | ns | | t _{sk(o)} | output skew
time | between channels | [3] | - | - | - | 0.5 | - | 0.5 | - | 0.5 | ns | | t _W | pulse width | data inputs | | - | - | 12 | - | 10 | - | 10 | - | ns | | f _{data} | data rate | | | - | - | - | 85 | - | 100 | _ | 100 | Mbps | NTB0104 Table 11. Dynamic characteristics for temperature range -40 °C to +85 °C^[1]...continued Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 8</u>; for wave forms see <u>Figure 6</u> and <u>Figure 7</u>. | Symbol | Parameter | Conditions | | | | | V _C | C(B) | | | | Unit | |----------------------|------------------|---------------------------|-----|---------|--------|-----|----------------|---------------|------|---------------|------|------| | | | 1. | | 1.8 V ± | 0.15 V | | 5 V
.2 V | 3.3 V ± 0.3 V | | 5.0 V ± 0.5 V | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | V _{CC(A)} = | 3.3 V ± 0.3 V | | | | | | | | | | | | | t _{pd} | propagation | A to B | | - | - | - | - | 0.9 | 4.7 | 0.8 | 4.0 | ns | | | delay | B to A | | - | - | - | - | 1.0 | 4.9 | 0.9 | 3.8 | ns | | t _{en} | enable time | OE to A, B | | - | - | - | - | - | 1.0 | - | 1.0 | μs | | t _{dis} | disable time | OE to A; no external load | [2] | - | - | - | - | 1.0 | 9.4 | 1.0 | 9.4 | ns | | | | OE to B; no external load | [2] | - | - | - | - | 1.0 | 11.3 | 1.0 | 10.4 | ns | | | | OE to A | | - | - | - | - | - | 260 | - | 260 | ns | | | | OE to B | | - | - | - | - | - | 200 | - | 200 | ns | | t _t | transition | A port | | - | - | - | - | 0.7 | 2.5 | 0.7 | 2.5 | ns | | | time | B port | | - | - | - | - | 0.5 | 2.5 | 0.4 | 2.7 | ns | | t _{sk(o)} | putput skew time | between channels | [3] | - | - | - | - | - | 0.5 | - | 0.5 | ns | | t _W | pulse width | data inputs | | - | - | - | - | 10 | - | 10 | - | ns | | f _{data} | data rate | | | - | - | - | - | - | 100 | - | 100 | Mbps | t_{pd} is the same as t_{PLH} and t_{PHL} . Table 12. Dynamic characteristics for temperature range -40 $^{\circ}$ C to +125 $^{\circ}$ C^[1] Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7. | Symbol | Parameter | Conditions | | V _{CC(B)} | | | | | | | | | |---|--------------|---------------------------|-----|------------------------------|------|-----|---------------|-----|---------------|-----|------|----| | | | 1 | | 1.8 V ± 0.15 V 2.5 V ± 0.2 V | | | 3.3 V ± 0.3 V | | 5.0 V ± 0.5 V | | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | $V_{CC(A)} = 1.5 \text{ V} \pm 0.1 \text{ V}$ | | | | | | | | | | | | | | t _{pd} | propagation | A to B | | 1.4 | 15.9 | 1.2 | 13.1 | 1.1 | 13.0 | 0.8 | 12.9 | ns | | | delay | B to A | | 0.9 | 17.2 | 0.7 | 15.0 | 0.4 | 14.7 | 0.3 | 16.7 | ns | | t _{en} | enable time | OE to A, B | | - | 1.0 | - | 1.0 | - | 1.0 | - | 1.0 | μs | | t _{dis} | disable time | OE to A; no external load | [2] | 1.0 | 13.5 | 1.0 | 13.5 | 1.0 | 13.5 | 1.0 | 13.5 | ns | | | | OE to B; no external load | [2] | 1.0 | 19.9 | 1.0 | 16.8 | 1.0 | 16.1 | 1.0 | 15.2 | ns | | | | OE to A | | - | 340 | - | 280 | - | 280 | - | 300 | ns | | | | OE to B | | - | 220 | - | 220 | - | 220 | - | 220 | ns | t_{en} is the same as t_{PZL} and t_{PZH} . t_{dis} is the same as t_{PLZ} and $t_{\text{PHZ}}.$ t_t is the same as t_{THL} and t_{TLH} Delay between OE going LOW and when the outputs are actually disabled. Skew between any two outputs of the same package switching in the same direction. Table 12. Dynamic characteristics for temperature range -40 °C to +125 °C^[1]...continued Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 8</u>; for wave forms see <u>Figure 6</u> and <u>Figure 7</u>. | Symbol | Parameter | Conditions | | | | | Vcc | C(B) | | | | Unit | |----------------------|---------------------|---------------------------|-----|---------|--------|-----|-------------|---------|---------|-------|---------|------| | | | | | 1.8 V ± | 0.15 V | | 5 V
.2 V | 3.3 V : | ± 0.3 V | 5.0 V | ± 0.5 V | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _t | transition | A port | | 0.9 | 7.1 | 0.9 | 7.1 | 0.9 | 7.1 | 0.9 | 7.1 | ns | | | time | B port | | 0.9 | 6.5 | 0.6 | 5.2 | 0.5 | 4.8 | 0.4 | 4.7 | ns | | t _{sk(o)} | output skew
time | between channels | [3] | - | 0.5 | - | 0.5 | - | 0.5 | - | 0.5 | ns | | t _W | pulse width | data inputs | | 25 | - | 25 | - | 25 | - | 25 | - | ns | | f _{data} | data rate | | | - | 40 | - | 40 | - | 40 | - | 40 | Mbps | | V _{CC(A)} = | 1.8 V ± 0.15 V | | | | | | | | | | | | | t _{pd} | propagation | A to B | | 1.6 | 14.0 | 1.4 | 10.7 | 1.3 | 9.8 | 1.2 | 9.5 | ns | | | delay | B to A | | 1.5 | 15.0 | 1.3 | 11.4 | 1.0 | 10.6 | 0.9 | 10.1 | ns | | t _{en} | enable time | OE to A, B | | - | 1.0 | - | 1.0 | - | 1.0 | - | 1.0 | μs | | t _{dis} | disable time | OE to A; no external load | [2] | 1.0 | 12.3 | 1.0 | 12.3 | 1.0 | 12.3 | 1.0 | 12.3 | ns | | | | OE to B; no external load | [2] | 1.0 | 18.1 | 1.0 | 15.3 | 1.0 | 14.5 | 1.0 | 13.5 | ns | | | | OE to A | | - | 280 | - | 250 | - | 250 | - | 250 | ns | | | | OE to B | | - | 220 | - | 220 | - | 220 | - | 220 | ns | | t _t | transition | A port | | 0.8 | 6.2 | 0.8 | 6.1 | 0.8 | 6.1 | 0.8 | 6.1 | ns | | | time | B port | | 0.9 | 5.8 | 0.6 | 5.2 | 0.5 | 4.8 | 0.4 | 4.7 | ns | | t _{sk(o)} | output skew
time | between channels | [3] | - | 0.5 | - | 0.5 | - | 0.5 | - | 0.5 | ns | | t _W | pulse width | data inputs | | 22 | - | 19 | - | 19 | - | 19 | - | ns | | f _{data} | data rate | | | - | 45 | - | 55 | - | 55 | - | 55 | Mbps | | V _{CC(A)} = | 2.5 V ± 0.2 V | | ' | | | | | | | | | | | t _{pd} | propagation | A to B | | - | - | 1.1 | 9.3 | 1.0 | 8.2 | 0.9 | 7.7 | ns | | | delay | B to A | | - | - | 1.2 | 9.6 | 1.1 | 8.1 | 0.9 | 7.4 | ns | | t _{en} | enable time | OE to A, B | | - | - | - | 1.0 | - | 1.0 | - | 1.0 | μs | | t _{dis} | disable time | OE to A; no external load | [2] | - | - | 1.0 | 10.1 | 1.0 | 10.1 | 1.0 | 10.1 | ns | | | | OE to B; no external load | [2] | - | - | 1.0 | 13.5 | 1.0 | 12.7 | 1.0 | 11.7 | ns | | | | OE to A | | - | - | - | 220 | - | 220 | - | 220 | ns | | | | OE to B | | - | - | - | 220 | - | 220 | - | 220 | ns | | t _t | transition | A port | | - | - | 0.7 | 5.0 | 0.7 | 5.0 | 0.7 | 5.0 | ns | | | time | B port | | - | - | 0.7 | 4.6 | 0.5 | 4.8 | 0.4 | 4.7 | ns | | t _{sk(o)} | output skew
time | between channels | [3] | - | - | - | 0.5 | - | 0.5 | - | 0.5 | ns | | t _W | pulse width | data inputs; | | - | - | 14 | - | 13 | - | 10 | - | ns | | f _{data} | data rate | | | - | - | - | 75 | - | 80 | - | 100 | Mbps | Table 12. Dynamic characteristics for temperature range -40 °C to +125 °C^[1]...continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7. | Symbol | Parameter | Conditions | | | | | V _C | C(B) | | | | Unit | |----------------------|------------------|---------------------------|-----|---------|--------|-----|----------------|-------|-----------------|-----|---------|------| | | | | | 1.8 V ± | 0.15 V | | 5 V
.2 V | 3.3 V | V ± 0.3 V 5.0 V | | ± 0.5 V | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | V _{CC(A)} = | 3.3 V ± 0.3 V | | | | | | | | | | | | | t _{pd} | propagation | A to B | | - | - | - | - | 0.9 | 7.7 | 0.8 | 7.0 | ns | | | delay | B to A | | - | - | - | - | 1.0 | 7.9 | 0.9 | 6.8 | ns | | t _{en} | enable time | OE to A, B | | - | - | - | - | - | 1.0 | - | 1.0 | μs | | t _{dis} | disable time | OE to A; no external load | [2] | - | - | - | - | 1.0 | 9.9 | 1.0 | 9.9 | ns | | | | OE to B; no external load | [2] | - | - | - | - | 1.0 | 12.1 | 1.0 | 10.9 | ns | | | | OE to A | | - | - | - | - | - | 280 | - | 280 | ns | | | | OE to B | | - | - | - | - | - | 220 | - | 220 | ns | | t _t | transition | A port | | - | - | - | - | 0.7 | 4.5 | 0.7 | 4.5 | ns | | | time | B port | | - | - | - | - | 0.5 | 4.1 | 0.4 | 4.7 | ns | | t _{sk(o)} | output skew time | between channels | [3] | - | - | - | - | - | 0.5 | - | 0.5 | ns | | t _W | pulse width | data inputs | | - | - | - | - | 10 | - | 10 | - | ns | | f _{data} | data rate | | | - | - | - | - | - | 100 | - | 100 | Mbps | ^[1] t_{pd} is the same as t_{PLH} and t_{PHL} . Table 13. Typical power dissipation capacitance Voltages are referenced to GND (ground = 0 V). [1][2] | Symbol | Parameter | Conditions | V _{CC(A)} | | | | | | | | | |----------------------
----------------------------|--|--------------------|-------|-------|--------------------|-------|-------|----------------------|----|--| | | | | 1.2 V | 1.2 V | 1.5 V | 1.8 V | 2.5 V | 2.5 V | 3.3 V | | | | | | | | | | V _{CC(B)} | | | | | | | | | | 1.8 V | 5.0 V | 1.8 V | 1.8 V | 2.5 V | 5.0 V | 3.3
V to
5.0 V | | | | T _{amb} = 2 | 5 °C | | | | | | | | | | | | C _{PD} | power | outputs enabled; OE = V _{CC(A)} | | | | | | | | | | | | dissipation capacitance | A port: (direction A to B) | 5 | 5 | 5 | 5 | 5 | 5 | 5 | pF | | | | Japananoo | A port: (direction B to A) | 8 | 8 | 8 | 8 | 8 | 8 | 8 | pF | | | | B port: (direction A to B) | 18 | 18 | 18 | 18 | 18 | 18 | 18 | pF | | | | | | B port: (direction B to A) | 13 | 16 | 12 | 12 | 12 | 12 | 13 | pF | | t_{en} is the same as t_{PZL} and t_{PZH} . t_{dis} is the same as t_{PLZ} and $t_{\text{PHZ}}.$ t_t is the same as t_{THL} and t_{TLH} Delay between OE going LOW and when the outputs are actually disabled. Skew between any two outputs of the same package switching in the same direction. ### Dual supply translating transceiver; auto direction sensing; 3-state Table 13. Typical power dissipation capacitance...continued Voltages are referenced to GND (ground = 0 V). [1][2] | Symbol | Parameter | Conditions | | | | V _{CC(A)} | | | | Unit | |--------|-----------|----------------------------|--------------------|-------|-------|--------------------|-------|-------|----------------------|------| | | | | 1.2 V | 1.2 V | 1.5 V | 1.8 V | 2.5 V | 2.5 V | 3.3 V | | | | | | V _{CC(B)} | | | | | | | | | | | | 1.8 V | 5.0 V | 1.8 V | 1.8 V | 2.5 V | 5.0 V | 3.3
V to
5.0 V | | | | | outputs disabled; OE = GND | | | | | | | | | | | | A port: (direction A to B) | 0.12 | 0.12 | 0.04 | 0.05 | 0.08 | 0.08 | 0.07 | pF | | | | A port: (direction B to A) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | pF | | | | B port: (direction A to B) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | pF | | | | B port: (direction B to A) | 0.07 | 0.09 | 0.07 | 0.07 | 0.05 | 0.09 | 0.09 | pF | ^[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; fo = output frequency in MHz; C_L = load capacitance in pF; V_{CC} = supply voltage in V; N = number of inputs switching; $$\begin{split} &\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{sum of the outputs.} \\ [2] &\quad f_i = 10 \text{ MHz; } V_I = \text{GND to } V_{CC}; t_r = t_f = 1 \text{ ns; } C_L = 0 \text{ pF; } R_L = \infty \Omega. \end{split}$$ Dual supply translating transceiver; auto direction sensing; 3-state ### 11 Waveforms Measurement points are given in Table 14. V_{OL} and V_{OH} are typical output voltage levels that occur with the output load. Figure 6. The data input (An, Bn) to data output (Bn, An) propagation delay times Measurement points are given in Table 14. V_{OL} and V_{OH} are typical output voltage levels that occur with the output load. Figure 7. Enable and disable times Table 14. Measurement points^[1] | Supply voltage | Input | Output | Output | | | | | |------------------|---------------------|---------------------|--------------------------|--------------------------|--|--|--| | V _{cco} | V _M | V _M | V _X | V _Y | | | | | 1.2 V | 0.5V _{CCI} | 0.5V _{CCO} | V _{OL} + 0.1 V | V _{OH} - 0.1 V | | | | | 1.5 V ± 0.1 V | 0.5V _{CCI} | 0.5V _{CCO} | V _{OL} + 0.1 V | V _{OH} - 0.1 V | | | | | 1.8 V ± 0.15 V | 0.5V _{CCI} | 0.5V _{CCO} | V _{OL} + 0.15 V | V _{OH} - 0.15 V | | | | | 2.5 V ± 0.2 V | 0.5V _{CCI} | 0.5V _{CCO} | V _{OL} + 0.15 V | V _{OH} - 0.15 V | | | | | 3.3 V ± 0.3 V | 0.5V _{CCI} | 0.5V _{CCO} | V _{OL} + 0.3 V | V _{OH} - 0.3 V | | | | | 5.0 V ± 0.5 V | 0.5V _{CCI} | 0.5V _{CCO} | V _{OL} + 0.3 V | V _{OH} - 0.3 V | | | | ^[1] V_{CCI} is the supply voltage associated with the input and V_{CCO} is the supply voltage associated with the output. NTB0104 #### Dual supply translating transceiver; auto direction sensing; 3-state Test data is given in Table 15. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; Z_O = 50 Ω ; dV/dt \geq 1.0 V/ns. R_L = Load resistance. C_L = Load capacitance including jig and probe capacitance. V_{EXT} = External voltage for measuring switching times. Figure 8. Test circuit for measuring switching times Table 15. Test data | Supply voltage | | Input | | Load | | V _{EXT} | | | | |--------------------|--------------------|-------------------------------|------------|-------|-------------------------------|-------------------------------------|-------------------------------------|--------------------------|--| | V _{CC(A)} | V _{CC(B)} | V _I ^[1] | Δt/ΔV | CL | R _L ^[2] | t _{PLH} , t _{PHL} | t _{PZH} , t _{PHZ} | $t_{PZL}, t_{PLZ}^{[3]}$ | | | 1.2 V to 3.6 V | 1.65 V to 5.5 V | V _{CCI} | ≤ 1.0 ns/V | 15 pF | 50 kΩ, 1 ΜΩ | open | open | 2V _{CCO} | | ^[1] V_{CCI} is the supply voltage associated with the input. For measuring data rate, pulse width, propagation delay and output rise and fall measurements, $R_L = 1 \text{ M}\Omega$; for measuring enable and disable times, $R_L = 50 \text{ k}\Omega$. ^[3] V_{CCO} is the supply voltage associated with the output. Dual supply translating transceiver; auto direction sensing; 3-state # 12 Application information #### 12.1 Applications Voltage level-translation applications. The NTB0104 can be used to interface between devices or systems operating at different supply voltages. See <u>Figure 9</u> for a typical operating circuit using the NTB0104. #### 12.2 Architecture The architecture of the NTB0104 is shown in Figure 10. The device does not require an extra input signal to control the direction of data flow from A to B or from B to A. In a static state, the output drivers of the NTB0104 can maintain a defined output level, but the output architecture is designed to be weak, so that they can be overdriven by an external driver when data on the bus starts flowing in the opposite direction. The output one shots detect rising or falling edges on the A or B ports. During a rising edge, the one shots turn on the PMOS transistors (T1, T3) for a short duration, accelerating the low-to-high transition. Similarly, during a falling edge, the one shots turn on the NMOS transistors (T2, T4) for a short duration, accelerating the high-to-low transition. During output transitions the typical output impedance is 70 Ω at V_{CCO} = 1.2 V to 1.8 V, 50 Ω at V_{CCO} = 1.8 V to 3.3 V and 40 Ω at V_{CCO} = 3.3 V to 5.0 V. Dual supply translating transceiver; auto direction sensing; 3-state ### 12.3 Input driver requirements For correct operation, the device driving the data I/Os of the NTB0104 must have a minimum drive capability of ±2 mA See Figure 11 for a plot of typical input current versus input voltage. #### 12.4 Power up During operation $V_{CC(A)}$ must never be higher than $V_{CC(B)}$, however during power-up $V_{CC(A)} \ge V_{CC(B)}$ does not damage the device, so either power supply can be ramped up first. There is no special power-up sequencing required. The NTB0104 includes circuitry that disables all output ports when either $V_{CC(A)}$ or $V_{CC(B)}$ is switched off. ### 12.5 Enable and disable An output enable input (OE) is used to disable the device. Setting OE = LOW causes all I/Os to assume the high-impedance OFF-state. The disable time (t_{dis} with no external load) indicates the delay between when OE NTB0104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved. Dual supply translating transceiver; auto direction sensing; 3-state goes LOW and when outputs actually become disabled. The enable time (t_{en}) indicates the amount of time the user must allow for one one-shot circuitry to become operational after OE is taken HIGH. To ensure the high-impedance OFF-state during power-up or power-down, pin OE should be tied to GND through a pull-down resistor, the minimum value of the resistor is determined by the current-sourcing capability of the driver. ### 12.6 Pull-up or pull-down resistors on I/O lines As mentioned previously the NTB0104 is designed with low static drive strength to drive capacitive loads of up to 70 pF. To avoid output contention issues, any pull-up or pull-down resistors used must be kept higher than 50 $k\Omega$. For this reason the NTB0104 is not recommended for use in open drain driver applications such as 1-Wire or I^2C . For these applications, the NTS0104 level translator is recommended. Dual supply translating transceiver; auto direction sensing; 3-state # 13 Package outline Dual supply translating transceiver; auto direction sensing; 3-state # 14 Footprint information Dual supply translating transceiver; auto direction sensing; 3-state ### 15 Abbreviations #### Table 16. Abbreviations | Acronym | Description | | | | |---------|---------------------------------------|--|--|--| | CDM | Charged Device Model | | | | | CMOS | nplementary Metal Oxide Semiconductor | | | | | DUT | Device Under Test | | | | | ESD | ElectroStatic Discharge | | | | | HBM | Human Body Model | | | | | MM | Machine Model | | | | Dual supply translating transceiver; auto direction sensing; 3-state # 16 Revision history #### Table 17. Revision history | Document ID | Release date | Description | |---------------|------------------|--| | NTB0104 v.4.1 | 17 October 2024 | Table 2: Added last time buy/ship date for NTB0104UK Table 9: Added internal 4 kΩ resistor min/max parameters
 | | NTB0104 v.4 | 19 April 2018 | Figure 12: Added "k" heat pad to pin minimum gap dimension Added Section 3.1, Section 14 Removed Section 4 "Marking" Added topside marking to Table 1 | | NTB0104 v.3 | 10 November 2011 | Legal pages updated. | | NTB0104 v.2 | 9 November 2011 | Product data sheet | | NTB0104 v.1 | 26 October 2010 | Product data sheet | Dual supply translating transceiver; auto direction sensing; 3-state ### Legal information #### Data sheet status | Document status ^{[1][2]} | Product status ^[3] | Definition | |-----------------------------------|-------------------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions". - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com. #### **Definitions** **Draft** — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### **Disclaimers** Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. NTB0104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved. #### Dual supply translating transceiver; auto direction sensing; 3-state **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications. **HTML publications** — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority. **Translations** — A
non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products. $\ensuremath{\mathsf{NXP}}\xspace \ensuremath{\mathsf{B.V.}}\xspace - \ensuremath{\mathsf{NXP}}\xspace \ensuremath{\mathsf{B.V.}}\xspace$ is not an operating company and it does not distribute or sell products. #### **Trademarks** Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. NXP — wordmark and logo are trademarks of NXP B.V. # Dual supply translating transceiver; auto direction sensing; 3-state ### **Tables** | Tab. 1. | Ordering information | 2 | Tab 11 | Dunamia abaracteriation for temperature | | |----------|-------------------------------------|-----|----------|---|----| | | Ordering information | | | • | | | Tab. 2. | Ordering options | 3 | | range -40 °C to +85 °C | 13 | | Tab. 3. | Pin description | 6 | Tab. 12. | Dynamic characteristics for temperature | | | Tab. 4. | Function table | 7 | | range -40 °C to +125 °C | 15 | | Tab. 5. | Limiting values | . 8 | Tab. 13. | Typical power dissipation capacitance | 17 | | Tab. 6. | Recommended operating conditions | 9 | Tab. 14. | Measurement points | 19 | | Tab. 7. | Typical static characteristics | 10 | Tab. 15. | Test data | 20 | | Tab. 8. | Typical supply current | 10 | Tab. 16. | Abbreviations | 29 | | Tab. 9. | Static characteristics | 11 | Tab. 17. | Revision history | 30 | | Tab. 10. | Typical dynamic characteristics for | | | | | | | temperature 25 °C | 13 | | | | ## Dual supply translating transceiver; auto direction sensing; 3-state # **Figures** | Fig. 1. | Logic symbol4 | Fig. 10. | Architecture of NTB0104 I/O cell (one | | |---------|---|----------|---|----| | Fig. 2. | Pin configuration DHVQFN14 (SOT762-1)5 | | channel) | 22 | | Fig. 3. | Pin configuration XQFN12 (SOT1174-1)5 | Fig. 11. | Typical input current versus input voltage | | | Fig. 4. | Pin configuration WLCSP12 package 5 | | graph | 22 | | Fig. 5. | Ball mapping for WLCSP126 | Fig. 12. | Package outline SOT762-1 (DHVQFN14) | 24 | | Fig. 6. | The data input (An, Bn) to data output (Bn, | Fig. 13. | Package outline SOT1174-1 (XQFN12) | 25 | | - | An) propagation delay times19 | Fig. 14. | Package outline WLCSP12 package | 26 | | Fig. 7. | Enable and disable times19 | Fig. 15. | Footprint information for reflow soldering of | | | Fig. 8. | Test circuit for measuring switching times 20 | · · | SOT762-1 (DHVQFN14) | 27 | | Fig. 9. | Typical operating circuit21 | Fig. 16. | Footprint information for reflow soldering of | | | - | | _ | SOT1174-1 (XQFN12) | 28 | ### Dual supply translating transceiver; auto direction sensing; 3-state ### **Contents** | 1 | General description | 1 | |------|---|----| | 2 | Features and benefits | 2 | | 3 | Ordering information | 3 | | 3.1 | Ordering options | | | 4 | Functional diagram | | | 5 | Pinning information | | | 5.1 | Pinning | | | 5.2 | Pin description | | | 6 | Functional description | | | 7 | Limiting values | | | 8 | Recommended operating conditions | 9 | | 9 | Static characteristics | | | 10 | Dynamic characteristics | 13 | | 11 | Waveforms | 19 | | 12 | Application information | 21 | | 12.1 | Applications | 21 | | 12.2 | Architecture | 21 | | 12.3 | Input driver requirements | 22 | | 12.4 | Power up | 22 | | 12.5 | Enable and disable | | | 12.6 | Pull-up or pull-down resistors on I/O lines | 23 | | 13 | Package outline | 24 | | 14 | Footprint information | | | 15 | Abbreviations | | | 16 | Revision history | | | | Legal information | | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. Document feedback