

1D ToF 测距方案

UM01010101 1.0.05 Date:2023/3/21

类别	内容
关键词	用户手册
摘要	

TOF10x

1D ToF 测距方案

修订历史

版本	日期	原因
V1.0.00	2020/12/24	初始版本
V1.0.01	2021/03/23	增加"二分频 VCSEL 发射频率"小节
V1.0.02	2021/04/12	更新模板,增加模拟 I2C 操作注意事项
V1.0.03	2021/04/22	修改部分描述
V1.0.04	2022/11/7	更新文档模板
V1.0.05	2023/3/21	更新文档模板

目 录

1.	功能	简介.		1
2.	交互	指令.		2
	2.1	ŕ	命令帧数据格式	2
	2.2	ì	反回帧数据格式	2
		2.2.1	设备状态返回帧	2
		2.2.2	设备测量结果返回帧	3
		2.2.3	设备串扰返回帧	3
	2.3	ì	通信协议概述	4
		2.3.1	UART 通信模式	4
		2.3.2	I ² C 通信模式	4
		2.3.3	通信模式选择	6
3.	应用	指南.		8
	3.1	3	失取设备信息	8
		3.1.1	获取设备固件版本	8
		3.1.2	获取设备状态	8
		3.1.3	获取测量结果	8
		3.1.4	获取设备串扰(仅对 TOF101)	8
	3.2	ţ	殳置设备参数	9
		3.2.1	初始化设备	9
		3.2.2	启动测量算法	9
		3.2.3	停止测量算法	9
		3.2.4	执行校准1	0
		3.2.5	二分频 VCSEL 发射频率(仅对 TOF101)1	0
		3.2.6	设置重复测量周期1	0
		3.2.7	设置迭代次数(仅对 TOF101)1	0
	3.3	Ì	9置系统参数1	1
		3.3.1	使能自动输出(UART 模式下)1	1
		3.3.2	禁能自动输出(UART 模式下)1	1
		3.3.3	设置从机地址1	1
		3.3.4	设置波特率(UART 模式下)1	2
	3.4	수 F	常规调试流程1	2
4.	免责	声明.		4

立功科技

1. 功能简介

TOF10x 是立功科技 求远电子推出的一款基于直接时间飞行技术的高精度距离传感器 方案。TOF10x 的主要特征如下:

- ▶ 测距范围: TOF100 (1mm~600mm), TOF101 (2mm~2500mm);
- ➢ 测量精度小于±5%;
- ▶ 分辨率为 1mm 的 16 位距离信息输出;
- ▶ 近距、远距测量算法自动切换;
- ▶ 近距测量周期最快 16.6ms;
- ➢ VCSEL 发射波长为 940nm;
- ▶ 支持 UART 和 I²C 两种通信方式;
- ▶ 支持 5V 或 3.3V 供电。

2. 交互指令

2.1 命令帧数据格式

当主机通过发送命令帧对设备进行功能设置,命令帧由"帧头+帧标识+参数 1+参数 2" 构成,具体格式如表 2.1 所示:

表 2.1 命令帧格式

帧头	帧标识	参数 1	参数 2
0x28(默认)	见表 2.2	见表 2.2	见表 2.2

其中,帧头为设备的地址,默认为 0x28。为兼容 I²C 通信从机地址,该地址为 7 位地址,也就是最高位为 0。可通过相关命令帧修改该地址。

帧标识代表本帧功能,帧标识和帧参数搭配设置设备功能,具体命令帧功能见表 2.2, 其中 xx 表示特定含义的数据,比如帧标识为 90 时,参数 1 为待设置重复测量周期的低八位, 参数 2 为待设置重复测量周期的高八位。

帧标识	参数1	参数2	功能	功能类	详细描述
2F	00	00	获取设备 ID		3.1.1 小节
20	00	00	获取设备状态	获取设备	3.1.2 小节
21	00	00	获取测量结果	信息	3.1.3 小节
22	00	00	获取设备串扰值(TOF101)		3.1.4 小节
9F	00	00	初始化设备		3.2.1 小节
9E	00	00	启动测量算法		3.2.2 小节
9D	00	00	停止测量算法		3.2.3 小节
9C	00	00	执行校准		3.2.4 小节
9B	XX	00	二分频 VCSEL 发送频率(TOF101)	い思いタ	3.2.5 小节
90	XX	XX	设置重复测量周期	仅且仅合 会粉	3.2.6 小节
91	XX	XX	设置迭代次数(TOF101)	少奴	3.2.7 小节
CE	00	00	使能自动输出(UART)		3.3.1 小节
CD	00	00	禁能自动输出(UART)		3.3.2 小节
C0	XX	00	设置从机地址		3.3.3 小节
C1	XX	00	设置波特率(UART)	3.3.4 小节	

表 2.2 命令帧功能一览表

2.2 返回帧数据格式

当主机发送任意命令帧设置设备功能后,设备会立即产生一个响应。在 UART 通信模 式下,设备接收到命令帧后会通过 TX 引脚发送一个返回帧数据;而在 I²C 通信模式下,返 回帧不能由作为从机的设备主动发送,而需要主机主动读取。

2.2.1 设备状态返回帧

主机设置完设备功能后,设备将返回执行结果与状态,它由"帧头+帧标识+1个参数" 构成,具体格式如表 2.3 所示:

表 2.3 状态返回帧数据格式

立功科技

帧头	帧标识	参数
0x28 (默认)	1Byte	STATUS

其中,帧头为设备地址,帧标识为设备上一次接收到的命令帧标识,帧参数为设备状态寄存器(STATUS)的值。STATUS寄存器的属性为 Read Only,具体描述如表 2.4 所示。

Field	Name	Value	Description
Bit7		0	设备未初始化
		1	设备已初始化
D:+6		0	未启动测距算法
BIIO	迅久业大	1	己启动测距算法
D:45	仅奋扒心	0	测量结果未更新
вцэ		1	测量结果已更新
Bit4		0	设备已处理完指令
		1	设备正在处理指令
Bit3:0		0	操作成功
		1	未知错误
		2	时序错误
	运行结果	3	操作超时
		4	设备 Busy
		5	参数错误
		其它	保留

表 2.4 状态寄存器(STATUS Register)描述

2.2.2 设备测量结果返回帧

主机发送完命令帧 21 (获取设备测量结果)后,设备将返回测量到的结果信息,该返回帧由"帧头+帧标识+4 个参数"构成,具体格式如表 2.5 所示。

表 2.5 测量结果返回帧数据格式

帧头	帧标识	参数 1	参数 2	参数 3	参数 4
0x28(默认)	0x21	RESULT[0]	RESULT[1]	RESULT[2]	RESULT[3]

其中,帧头为设备地址,帧标识为 0x21,帧参数为设备测量结果寄存器(RESULT)的值。RESULT 寄存器的属性为 Read Only,具体描述如表 2.6 所示。

表 2.6 结果寄存器(RESULT Register)描述

Field	Name	Description
RESULT[0]	Number	测量编号(0~255)
RESULT[1]	Reliability	置信度(0~63)
RESULT[2]	Distance(mm)	距离低八位
RESULT[3]	Distance(mm)	距离高八位

2.2.3 设备串扰返回帧

主机发送完命令帧 22 (获取设备串扰值)后,设备将返回当前串扰值,该返回帧由"帧 头+帧标识+2 个参数"构成,具体格式如表 2.7 所示。

立功科技

表 2.7 设备串扰返回帧数据格式

帧头	帧标识	参数 1	参数 2
0x28(默认)	0x22	XTALK[0]	XTALK[1]

其中,帧头为设备地址,帧标识为 0x22,帧参数为串扰寄存器 (XTALK)的值。XTALK 寄存器的属性为 Read Only,具体描述如表 2.8 所示。

表 2.8 串扰寄存器(XTALK Register)描述

Field	Name	Description
XTALK[0]	Xtalk_L	串扰低八位
XTALK[1]	Xtalk_H	串扰高八位

2.3 通信协议概述

设备可通过 MOD 引脚选择 UART 或 I²C 方式与主机通信,默认情况下是 UART 通信方式。通信模式的选择参考 2.3.3 小节,注意无论是 UART 还是 I²C 通信模式,都必须在 TX/SCL 和 RX/SDA 总线上外接上拉电阻!

2.3.1 UART 通信模式

UART 通信模式下,波特率默认为115200,主机串口配置如表 2.9 所示。

表 2.9 串口配置参数

波特率	115200
数据位	8Bit
停止位	1Bit
校验位	NONE

主机配置完 UART 参数后,就可以跟设备进行如下通信。

- (1) 主机依次发送设备地址(默认 0x28)、帧标识、参数 1、参数 2,构成一帧命令 帧;
- (2) 设备接收到命令帧后,会去执行相应的命令,在此期间,主机一直等待即可;
- (3) 设备执行完命令,会将执行结果和设备状态或测量结果发送给主机;
- (4) 主机依次接收设备返回的数据。

具体流程如图 2.1 所示。

图 2.1 UART 主从通信流程

2.3.2 I²C 通信模式

 I^2C 通信模式下,当主机使用硬件 I^2C 与设备通信时,要控制通信波特率不超过400kbps。

主机要尽量避免使用模拟 I²C 与从机通信!若主机通过模拟 I²C 与设备通信,主机要将 SCL 和 SDA 全配置为开漏模式,并且在操作 SCL 时要先判断 SCL 是否处于忙状态(当从 **立 印訴持交** ©2023 Guangzhou ZLG Technology Corp.,Ltd. 机将 SCL 钳为低电平时表示从机 I²C 正忙),若从机 I²C 正忙,主机要延时等待从机空闲, 否则会通信出错,同时主机轮询从机状态寄存器的间隔周期也不要低于 10ms。

主机通过 I²C 总线写设备流程如下:

- (1) 主机发送启动信号 S,准备开始一次通信;
- (2) 主机发送7位从机地址+1位"W"控制位,构成一个写命令字节;
- (3) 相对应的从机接收到命令字节后,向主机回馈应答信号 ACK (ACK=0);
- (4) 主机接收到从机的应答信号后,开始发送帧标识;
- (5) 从机接收到数据后,返回 ACK;
- (6) 主机接收到应答信号后,再依次发送参数1和参数2;

当主机发送完参数 2 并收到从机的 ACK 后,通过向从机发送一个停止信号 P 结束本次 通信并释放总线。从机接收到信号 P 后也退出与主机之间的通信。

具体流程如图 2.2 所示。

图 2.2 I²C 模式主机写流程

主机通过 I²C 总线读设备流程如下:

- (1) 主机发送启动信号 S,准备开始一次通信;
- (2) 主机发送7位从机地址+1位"W"控制位,构成一个写命令字节;
- (3) 相对应的从机接收到命令字节后,向主机回馈应答信号 ACK (ACK=0);
- (4) 主机接收到从机的应答信号后,开始发送帧标识;
- (5) 从机接收到数据后,返回 ACK;
- (6) 主机再次发送启动信号,并发送 7 位从机地址+1 位 "R"控制位,构成一个读 命令字节,准备开始读数据;
- (7) 从机接收到读命令字节后,返回 ACK,并向主机发送参数 1;
- (8) 主机接收到参数1后,向从机返回ACK;
- (9) 从机继续向主机发送下一个参数;
- (10) 当主机接收完最后一个参数后,要向从机发送一个非应答信号(ACK=1),从 机接收到非应答信号后便停止发送;
- (11) 主机发送完非应答信号后,再发送一个停止信号 P,结束通信释放总线。

具体流程如图 2.3 所示。

图 2.3 I²C 模式主机读流程

2.3.3 通信模式选择

在设备上电 800ms 内, MOD 引脚电压要保持稳定,以保证设备进入正确的通信模式! 设备默认是采用 UART 模式与主机通信,有以下两种方法选择设备的通信模式:

(1) 通过 MOD 引脚外接下拉电阻选择

TOF10x 设备的 MOD 引脚被板载电阻 R5 上拉到 VCC,用户可以给 MOD 引脚外接下 拉电阻实现通信模式选择,如图 2.4 所示。

图 2.4 MOD 引脚下拉

若 R_{MOD} 不焊接,则选择为 UART 通信模式;若焊接不同阻值的 R_{MOD},则可选择 I²C 通信和从机地址,具体阻值与从机地址对应关系如表 2.10 所示。

通信方式	从机地址(帧头)	R _{MOD} 阻值要求	典型值
UART	0x28	不焊接	-
I ² C	0x28	$0 \le \frac{R_{MOD}}{R_{MOD} + 10k\Omega} < 20\%$	1ΚΩ
	0x29	$20\% \le \frac{R_{MOD}}{R_{MOD} + 10 k\Omega} < 40\%$	4.7ΚΩ
	0x30	$40\% \le \frac{R_{MOD}}{R_{MOD} + 10 k\Omega} < 60\%$	10ΚΩ
	0x31	$60\% \le \frac{R_{MOD}}{R_{MOD} + 10k\Omega} < 80\%$	24ΚΩ

表 2.10 MOD 引脚外接下拉电阻选择

(2) 通过软件命令选择

如果用户需要更多的设备(超过4个)与主机 I²C 通信,那么按照上述方法分配从机地 址是不够的,这时就需要通过指令来设置设备从机地址,实现过程简述如下。

硬件连接:将每个从机的 MOD 引脚与主机的 I/O 相连,保证主机可以控制每一个从机

刷技

的 MOD 引脚电平。

Step1: 上电将所有从机的 MOD 引脚全部拉高,保证所有设备处于 UART 通信模式;

Step2: 拉低其中一个从机的MOD引脚,这时该从机将处于I²C通信模式,地址为0x28;

Step3: 主机给该从机发送命令 C0,将该从机的地址设置为其它地址;

Step4: 拉低另一个从机的 MOD 引脚, 保证该从机也处于 I²C 通信模式, 地址为 0x28; Step5: 重复 Step3 和 Step4, 直到所有从机的地址都被重新设置。

3. 应用指南

3.1 获取设备信息

3.1.1 获取设备固件版本

主机可发送命令 2F 来获取设备的固件版本,获取设备固件版本的示例操作如表 3.2 所示。设备的固件版本信息由两个字节构成,前一个字节的低 4 位代表修订号,高 4 位代表次版本号;后一个字节的低 4 位代表主版本号,高 4 位代表设备型号 (TOF100 为 0, TOF101 为 1)。例如读到的两个字节分别为 16 进制的 01 11,则表示该设备型号为 TOF101,固件版本为 V1.0.1。

表 3.1 获取设备固件版本操作示例

通信模式	主机操作	数据帧内容(16 进制)
LIADT	发送	28 2F 00 00
UARI	接收	28 2F xx xx
I ² C	读	S 28 W 2F S 28 R xx xx P

3.1.2 获取设备状态

在对设备进行操作前、或向设备发送命令帧后,都有必要对设备的状态进行查询,主机 可发送命令 20 来获取 STATUS 寄存器的值,获取设备状态的示例操作如表 3.2 所示。

表 3.2 获取设备状态操作示例

通信模式	主机操作	数据帧内容(16 进制)
UART	发送	28 20 00 00
	接收	28 20 xx
I ² C	读	S 28 W 20 S 28 R xx P

3.1.3 获取测量结果

当设备 STATUS 寄存器的 Bit5 为1时,表示设备已更新 RESULT 寄存器,这时主机可 发送命令 21 来获取 RESULT 寄存器的值,获取设备测量结果的示例操作如表 3.3 所示。

表 3.3 获取设备测量结果操作示例

通信模式	主机操作	数据帧内容(16 进制)
LIADT	发送	28 21 00 00
UAKI	接收	28 21 xx xx xx xx
I ² C	读	S 28 W 21 S 28 R xx xx xx x P

3.1.4 获取设备串扰(仅对 TOF101)

设备串扰值表征的是直接被盖板挡回去的光子量,这个值越小说明盖板的透光性能越好。 给设备安装外壳时,要保证串扰值在400~1900之间!

设备更新完 RESULT 寄存器后就会更新 XTALK 寄存器,这时主机可发送命令 22 来获 取 XTALK 寄存器的值,获取设备串扰值的示例操作如表 3.4 所示。注意:获取串扰值时, 要保证设备处于暗环境光和前方 40cm 内无目标物的环境下; TOF100 设备不支持获取串扰 值!

立功科技

通信模式	主机操作	数据帧内容(16 进制)
UADT	发送	28 22 00 00
UAKI	接收	28 22 xx xx
I ² C	读	S 28 W 22 S 28 R xx xx P

表 3.4 获取设备串扰值操作示例

3.2 设置设备参数

3.2.1 初始化设备

设备上电是会自动完成初始化,当设备 STATUS 寄存器的 Bit7 为0时,表示设备还未 初始化完成,这时需要等待设备完成初始化,或者主机发送命令 9F 对设备进行初始化。在 I²C 通信模式下,主机发送完命令 9F 后,需要轮询 STATUS 寄存器的值,直到 Bit7 为1时 才表示设备已完成初始化;而在 UART 通信模式下则可直接根据设备返回帧判断是否完成 初始化。初始化设备的示例操作如表 3.5 所示。

夜 5.5 初知化皮苗採肝小沙	表 3.5	初始化设备操作示例
-----------------	-------	-----------

通信模式	主机操作	数据帧内容(16 进制)
LIADT	发送	28 9F 00 00
UAKI	接收	28 9F xx
I^2C	写	S 28 W 9F 00 00 P
IC	读	S 28 W 20 S 28 R xx P

3.2.2 启动测量算法

设备初始化完成并设置完功能参数后,就可以发送命令 9E 启动测距算法 APP,然后根据 STATUS 寄存器的 Bit3~Bit0 的值判断该命令的执行结果。启动测量算法的示例操作如表 3.6 所示。

表 3.6 启动测量算法操作示例

通信模式	主机操作	数据帧内容(16 进制)
LIADT	发送	28 9E 00 00
UARI	接收	28 9E xx
I ² C	写	S 28 W 9E 00 00 P
	读	S 28 W 20 S 28 R xx P

3.2.3 停止测量算法

当需要停止测量算法时,可以发送命令 9D 停止测量算法 APP, 然后根据 STATUS 寄存器的 Bit3~Bit0 的值判断该命令的执行结果。停止测量算法的示例操作如表 3.7 所示。

通信模式	主机操作	数据帧内容(16 进制)
LIADT	发送	28 9D 00 00
UARI	接收	28 9D xx
I ² C	写	S 28 W 9D 00 00 P
	读	S 28 W 20 S 28 R xx P

表 3.7 停止测量算法操作示例

立功科技

TOF10x 1D ToF 测距方案

3.2.4 执行校准

当给设备加装盖板或其它光学结构时,可能需要对设备进行校准,这能确定测距参考零 点,消除由于结构差异带来的测量误差,提高测量的稳定性。注意校准时,设备必须处于黑 暗的环境下,并且前方 40cm 内无障碍物。这个环境搭建好之后,主机发送命令 9C 对设备 进行校准,然后根据 STATUS 寄存器的 Bit3~Bit0 的值判断该命令的执行结果。对设备进行 校准的示例操作如表 3.8 所示。

通信模式	主机操作	数据帧内容(16 进制)
UADT	发送	28 9C 00 00
UARI	接收	28 9C xx
I ² C	写	S 28 W 9C 00 00 P
	读	S 28 W 20 S 28 R xx P

表 3.8 校准设备操作示例

3.2.5 二分频 VCSEL 发射频率(仅对 TOF101)

当目标物超出了 TOF101 设备的测量范围,设备仍然能输出错误的距离值时,主机需要 在启动测量前发送命令 9B 二分频 VCSEL 发射频率,该命令带一个参数:01 表示二分频, 00 表示不二分频(默认状态)。二分频 VCSEL 发射频率的示例操作如表 3.7 所示。

表 3.9 二分频 VCSEL 发射频率操作示例

通信模式	主机操作	数据帧内容(16 进制)
LIADT	发送	28 9B 01 00
UARI	接收	28 9B xx
I^2C	写	S 28 W 9B 01 00 P
FC	读	S 28 W 20 S 28 R xx P

3.2.6 设置重复测量周期

设备的测量速度可通过命令 90 设置,该命令帧的包含两个参数,参数 1 为重复测量周期的低八位,参数 2 为高八位,共同组成一个 16 位的重复周期,单位是 ms。当设置重复测量周期为 0 时表示单次测量,即设备测量完一次数据后自动停止测量算法,下次测量需要重新启动测量算法。

例如想要设备每 1000ms 测出一个数据,转化为 16 进制,即为每 3E8ms 测出一次数据。 那就可以设定参数 1 为 0xE8,参数 2 为 0x03,然后发送命令 90 给设备完成设置。该示例 对应操作如表 3.10 所示。

表 3.10 设置重复测量周期操作示例

通信模式	主机操作	数据帧内容(16 进制)
LIADT	发送	28 90 E8 03
UARI	接收	28 90 xx
I ² C	写	S 28 W 90 E8 03 P
	读	S 28 W 20 S 28 R xx P

3.2.7 设置迭代次数(仅对 TOF101)

迭代次数表示一个测量周期里面传感器发射 VCSEL 脉冲的次数,迭代次数越大,设备 立
切
能
技 ©2023 Guangzhou ZLG Technology Corp.,Ltd. 抗环境光干扰能力越强,测量可信度越高,但测量周期越长,功耗越大,一般设置在400k~4000k范围内。设备的迭代次数可通过命令91设置,该命令帧的包含两个参数,参数1为迭代次数的低八位,参数2为高八位,共同组成一个16位的迭代次数,单位是k次。TOF100不支持迭代次数的配置!

例如要设置设备的迭代次数为 900k,转化为 16 进制,即为 384k。那就可以设定参数 1 为 0x84,参数 2 为 0x03,然后发送命令 91 给设备完成设置。该示例对应操作如表 3.11 所示。

通信模式	主机操作	数据帧内容(16 进制)									
UART	发送	28	91	84	03						
	接收	28	91	xx							
I ² C	写	S	28	W	91	84	03	Р			
	读	S	28	W	20	S	28	R	xx	Р	

表 3.11 设置迭代次数操作示例

3.3 设置系统参数

3.3.1 使能自动输出(UART 模式下)

在 UART 通信模式下, 主机可通过命令 CE 使能自动输出。当已设置设备重复测量周期 为 1000ms, 并且使能了自动输出, 那么在 UART 通信模式下, 设备每 1000ms 会自动把测 量到的结果发送给主机。使能自动输出的示例操作如表 3.12 所示。

表 3.12 使能自动输出操作示例

通信模式	主机操作	数据帧内容(16进制)					
UART	发送	28 CE 00 00					
	接收	28 CE xx					

3.3.2 禁能自动输出(UART 模式下)

相对使能自动输出,禁能自动输出的示例操作如表 3.13 所示。

表 3.13 禁能自动输出操作示例

通信模式	主机操作	数据帧内容(16 进制)					
LLADT	发送	28 CD 00 00					
UAKI	接收	28 CD xx					

3.3.3 设置从机地址

为了实现多机通信,每个设备的地址可独立设置,默认初始地址为 0x28。主机可通过 命令 C0 设置设备地址,该命令帧包含两个参数,参数 1 为预设置的七位从机地址,参数 2 为 0。注意不能设置从机地址为 0x00,设备断电后新地址丢失!

例如要设置设备地址为0x55,示例操作如表 3.14 所示。当重新设置设备地址成功后,要用新地址与设备进行通信。

表 3.14 设置从机地址操作示例

通信模式	主机操作	数据帧内容(16 进制)
~ 11 17 1		

立功科技

UADT	发送	28	C) 55	5 00)					
UAKI	接收	28	C) xy	ĸ						
	写	S	28	W	C0	55	00	Р			
IC	读(新地址)	S	55	W	20	S	55	R	xx	Р	

3.3.4 设置波特率(UART 模式下)

在 UART 通信模式下,主机可通过命令 C1 设置设备地址,该命令帧的参数 1 用于设置 通信波特率,具体描述如表 3.15 所示,参数 2 为 0。设备断电后新波特率保持!

表 3.15 波特率选项

参数 1	波特率
0x01	2400
0x02	4800
0x03	9600
0x04	56000
0x05	115200(默认)

例如要设置设备 UART 通信波特率为 9600, 示例操作如表 3.16 所示。设置完新的波特率后, 需要用新的波特率进行通信。

表 3.16 设置波特率操作示例

通信模式	主机操作	数据帧内容(16 进制)						
LIADT	发送	28	C1	03	00			
UAKI	接收(新波特率)	28	C1	XX				

3.4 常规调试流程

设备通过 USB-TTL 串口设备与电脑连接,打开串口调试助手,按图 3.1 所示进行调试即可:

- 以 16 进制发送 "28 20 00 00" 获取设备状态,直到设备返回 "28 20 80",表示设备 上电初始化成功,可进行后面的操作;
- 2) 【可选】以 16 进制发送 "28 90 21 00" 设置设备重复测量周期为 33ms,这一步不 设置默认重复周期为 33ms;
- 3) 【可选】以 16 进制发送 "28 91 B0 04" 设置设备迭代次数为 1.2M, 这一步不设置 默认迭代次数为 900k;
- 4) 以16进制发送"289E0000"启动测量,若设备返回"289ECO"表示启动成功;
- 5) 以16进制发送"28210000"即可读取测量信息。

TOF10x 1D ToF 测距方案

User Manual

图 3.1 调试程序流程图

4. 免责声明

本着为用户提供更好服务的原则,广州立功科技股份有限公司(下称"立功科技")在 本手册中将尽可能地为用户呈现详实、准确的产品信息。但介于本手册的内容具有一定的时 效性,立功科技不能完全保证该文档在任何时段的时效性与适用性。立功科技有权在没有通 知的情况下对本手册上的内容进行更新,恕不另行通知。为了得到最新版本的信息,请尊敬 的用户定时访问立功科技官方网站或者与立功科技工作人员联系。感谢您的包容与支持!

Dreams come true with professionalism and dedication.

广州立功科技股份有限公司

更多详情请访问 www.zlgmcu.com 400-888-2705

欢迎拨打全国服务热线

