

TN01010101 1.0.3 Date:2024/10/14

类别	内容
关键词	TOF20x、UART、指令
摘要	TOF20x通信协议指令说明

多点 TOF 测距

修订历史

版本	日期	原因
V1.0.00	2022/08/25	创建文档
V1.0.1	2023/3/20	更改名称描述
V1.0.2	2024/1/5	增加短距离测距模式
V1.0.3	2024/3/5	修改获取信息指令帧

H	氶

1.	功能	简介	. 2
2.	交互	指令	. 3
	2.1	命令帧数据格式	3
	2.2	通信协议概述	3
3.	应用	指南	. 5
	3.1	获取信息	. 5
		3.1.1 获取 ID	. 5
		3.1.2 获取状态	5
		3.1.3 获取测距结果	. 6
		3.1.4 获取模块串扰值	. 6
	3.2	设置参数	. 7
		3.2.1 初始化	7
		3.2.2 启动测距	7
		3.2.3 停止测距	8
		3.2.4 执行校准	8
		3.2.5 设置测量周期	. 8
		3.2.6 设置迭代次数	. 8
		3.2.7 设置 SPAD_MAP_ID	9
		3.2.8 设置置信度阈值	. 9
		3.2.9 设置 8×8 模式	. 9
		3.2.10 设置中断模式	10
		3.2.11 设置最短距离阈值中断	10
		3.2.12 设置最远距离阈值中断	10
		3.2.13 设置短距离精准模式	10
	3.3	设置系统参数	11
		3.3.1 进入睡眠模式	11
		3.3.2 使能自动输出	11
		3.3.3 禁能自动输出	11
		3.3.4 设置进入测试模式	11
		3.3.5 设置退出测试模式	12
		3.3.6 设置波特率	12
	3.4	常规调试流程	12
4.	免责	声明	15

1. 功能简介

2D-ToF 多点高精度测距方案集成了 ToF 传感器芯片, MCU 主控和电源管理, 对外采用 5pin 接口, 与主机串口指令通信, 方便易用可快速上手。具有测距远和精度高的特点, 有效 测距距离是 1~500cm, 测距精度可达±3%, 可广泛应用于测控、工业、医疗、消费类电子 产品等需要检测距离的领域。

TOF20x 的主要特征如下:

- ▶ 工作电压范围: 3.3/5V;
- ▶ 抵抗环境光干扰能力强;
- ▶ 有效识别距离: 1~500cm;
- ▶ 测距精度可达±3%;
- ▶ UART 命令帧通信协议;
- ▶ 多点 dToF 技术;
- ▶ 检测区域: 3×3、4×4、8×8。

2. 交互指令

2.1 命令帧数据格式

主机和模块通过数据帧通信,主机对模块发送命令帧之后,模块会给主机返回一帧数据, 命令帧的具体格式和功能如表 2.1 所示。

命令帧由"帧头+帧标识+参数1+参数2"构成,帧头固定为0x28,帧标识和参数组合 表示这帧数据的功能,比如帧标识90为设置模块的测量周期,参数1为待设测量周期值的 低八位,参数2为待设测量周期值的高八位。

帧头	帧标识	参数 1	参数 2	功能	功能类	详细描述	
	2F	00	00	获取模块信息		3.1.1	
	20	00	00	获取模块状态 获取模		3.1.2	
	21	00	00	获取测量结果	信息	3.1.3	
	22	00	00	获取串扰值		3.1.4	
	9F	00	00	初始化模块		3.2.1	
	9E	00	00	启动测距		3.2.2	
	9D	00	00	停止测距		3.2.3	
	9C	00	00	执行校准		3.2.3	
	90	XX	XX	设置测量周期		3.2.5	
	91	XX	XX	设置迭代次数		3.2.6	
28	92	XX	00	设置 SPAD_MAP_ID		3.2.7	
	93	XX	00	设置置信度阈值		3.2.8	
	94	XX	00	设置 8×8 模式	边里墙井	3.2.9	
	95	XX	00	测距中断模式	仅且保伏 会粉 金粉	3.2.10	
	96	XX	XX	最短距离阈值中断	少奴	3.2.11	
	97	XX	XX	最远距离阈值中断		3.2.12	
	98	XX	00	设置短距离精准模式		3.2.13	
	CF	00	00	设置进入睡眠模式		3.2.9	
	CE	00	00	使能自动输出		3.3.2	
	CD	00	00	禁能自动输出		3.3.3	
	CC	00	00	使能进入测试模式		3.3.4	
	СВ	00	00	禁能退出测试模式		3.3.5	
	C1	XX	00	设置波特率		3.3.6	

表 2.1 命令帧功能一览表

返回帧由"帧头+帧标识+N个参数"构成,帧头固定为0x28,帧标识为接收到的命令 帧的帧标识,参数的个数不固定。

2.2 通信协议概述

UART 通信模式,默认配置波特率默认为 115200bps, 主机串口配置如表 2.2 所示。

表 2.2 串口配置参数

立功科技

波特率	115200
数据位	8 Bit
停止位	1 Bit
校验位	NONE

主机配置完 UART 参数后,就可以进行如下通信。

- 主机依次发送从机地址(默认 0x28)即帧头、帧标识、参数 1、参数 2,构成一 条完整帧命令帧;
- 2) 从机接收到命令帧后,会去执行相应的命令,在此期间,主机一直等待即可;
- 3) 从机执行完命令,会将执行结果和状态或测量结果发送给主机;
- 4) 主机依次接收从机返回的数据。

具体流程如图 2.1 所示:

模块地址	帧标识	参数1	参数2	WTIME	模块地址	帧标识	参数1	\Box	参数N
				/ ▲	\subseteq				
ŧ	机依次发送核 标识、参数	模块地址、帧 1、参数2	楔	 块执行命令	时间	模块依次发 标识以	送模块地址、 人及N个参数	帧	
1 ±	机产生的信号			模块产生的]信号				
			图 2.	1 UART	主从通信				

3. 应用指南

3.1 获取信息

3.1.1 获取 ID

主机可发送命令 2F 来获取唯一 UID 和固件版本,示例操作如表 3.1 所示。UID 信息由 前四个 16 进制的字节构成,UID 代表为 xx-xx-xx,这个 UID 都是唯一的。固件版本信息 由后两个字节构成,前一个字节的低 4 位代表修订号,高 4 位代表次 版本号;后一个字节 的低 4 位代表主版本号,高 4 位代表模块型号(TOF200 为 0, TOF201 为 1)。

表 3.1 获取信息操作示例

通信模式	主机操作	数据帧内容(十六进制)
UART	发送	28 2F 00 00
	接收	28 2F xx xx xx xx xx xx xx

3.1.2 获取状态

在进行操作前、或发送命令帧前后,都有必要对状态进行查询,主机可发送命令 20 来获取当前状态。获取从机状态的示例操作如表 3.3 所示,返回的状态描述如表 3.4 所示。

表 3.3 获取状态操作示例

通信模式	主机操作	数据帧内容(十六进制)
LIADT	发送	28 20 00 00
UAKI	接收	28 20 xx

表 3.4 模块状态描述

Field	Name	Value	Description
Bit7		0	模块未初始化
		1	模块已初始化
Bit6 Bit5	描刊中大	0	未启动测量
	候状化态	1	已启动测量
		0	测距结果未更新
		1	测距结果已更新
D:44		0	模块已处理完指令
Bit4		1	模块正在处理指令

续上表

Field	Name	Value	Description
	运行结果	0	操作成功
		1	未知错误
		2	时序错误
Bit3:0		3	操作超时
		4	模块 busy
		5	参数错误
		其他	保留

立功科技

多点 TOF 测距

3.1.3 获取测距结果

主机可发送命令 21 来获取测距结果,从返回状态参数可知测距结果状态,当状态参数 Bit5 为 0 时,表示测距结果未更新,获取的测距结果是停止测距前的结果;当 Bit5 为 1 时, 表示测距结果更新。获取测量结果的示例操作如表 3.5 所示。

表 3.5 获取测量结果操作示例

通信模式	主机操作	数据帧内容(十六进制)
LIADT	发送	28 21 00 00
UART	接收	28 21 xx xx xx xx

测距结果包括第一目标物的 16 个通道的编号、测距值和置信度,以及检测到第二目标 物的测距值中的 16 个通道值,注意:在 4×4 模式下,通道 9 和通道 27 不适用。具体描述如 表 3.6 所示。

Field	Name	Description
RESULT[0]		道通1通道编号
RESULT[1]	-	道通1置信度
RESULT[2]	-	道通1距离值低八位
RESULT[3]	-	道通1距离高八位
•••••		
RESULT[68]		道通18通道编号
RESULT[68]		道通18置信度
RESULT[70]	测距结朱	道通18距离值低八位
RESULT[71]		道通18距离高八位
•••••		
RESULT[140]		道通18(第二目标通道)通道编号
RESULT[141]	-	道通18(第二目标通道)置信度
RESULT[142]		道通18(第二目标通道)距离值低八位
RESULT[143]		道通18(第二目标通道)距离高八位

表 3.6 结果测距值描述

TOF201 模块的 8×8 模式中,测距结果包含 64 个通道的测距值,共 130 个字节。

Field	Name	Description
RESULT[0]		道通1距离值低八位
RESULT[1]		道通1距离高八位
	测距结果	
RESULT[128]		道通 64 距离值低八位
RESULT[129]		道通 64 距离高八位

3.1.4 获取模块串扰值

串扰值指示盖板安装好坏程度,装上盖板后,要保证串扰值在 800~16000 之间(迭代次 数为 4000k 时)!

启动测距算法后,主机可发送命令 22 来获取盖板串扰值(注意: 需保证距离模块前方 40cm 没有目标物),获取获取盖板串扰值的示例操作如表 3.7 所示,串扰值具体描述如表

立功科技

多点 TOF 测距

3.8 所示。

注意:模块使用 3x3 的模式配置执行校准,得到通道 1-9 的串扰值。使用 4x4 的模式配置执行校准,得到通道 1-9 和通道 10-18 的串扰值。通道串扰值的合理范围在 800-16000 之间。

表 3.7 获取模块串扰值操作示例

通信模式	主机操作	数据帧内容(十六进制)
LLADT	发送	28 22 00 00
UAKI	接收	28 22 xx xx xx xx

Field	Name	Description
RESULT[0]		参考通道串扰值高二十四位
RESULT[1]		参考通道串扰值高十六位
RESULT[2]		参考通道串扰值高八位
RESULT[3]		参考通道串扰值低八位
•••••		
RESULT[36]		道通9串扰值高二十四位
RESULT[37]	羊托中排店	道通9串扰值高十六位
RESULT[38]	孟 权 甲 杌 伹	道通9串扰值高八位
RESULT[39]		道通9串扰值低八位
•••••	-	
RESULT[76]		道通 18 串扰值高二十四位
RESULT[77]		道通 18 串扰值高十六位
RESULT[78]		道通18串扰值高八位
RESULT[79]		道通18串扰值低八位

表 3.8 串扰值描述

3.2 设置参数

3.2.1 初始化

上电会自动完成初始化,主机也可发送命令 9F 对模块进行初始化,然后根据返回的参数判断初始化是否执行完成。初始化的示例操作如表 3.9 所示,返回参数的 Bit2~Bit0 表示 该命令的运行结果,详细描述见表 3.4。

表 3.9 初始化模块操作示例

通信模式	主机操作	数据帧内容(十六进制)
LLADT	发送	28 9F 00 00
UAKI	接收	28 9F xx

3.2.2 启动测距

主机可发送命令 9E 设置启动测距,测距前可重新设置配置参数或使用默认配置参数进行测距,根据返回的参数可判断是否成功启动测距。启动测距的示例操作如表 3.10 所示,返回参数的 Bit2~Bit0 表示该命令的运行结果,详细描述见表 3.4。

通信模式	主机操作	数据帧内容(十六进制)
	发送	28 9E 00 00
UAKI	接收	28 9E xx

表 3.10 启动测距操作示例

3.2.3 停止测距

主机可发送命令 9D 设置停止测距,根据返回的参数可判断是否成功停止测距。停止测距的示例操作如表 3.11 所示,返回参数的的 Bit2~Bit0 表示该命令的运行结果,详细描述见表 3.4。

表 3.11 停止测量操作示例

通信模式	主机操作	数据帧内容(十六进制)
LLADT	发送	28 9D 00 00
UARI	接收	28 9D xx

3.2.4 执行校准

加装盖板或其它光学结构时,需要重新进行校准,这能确定测距参考零点,消除由于结构差异带来的测量误差,提高测量的稳定性。主机可发送命令 9C 重新进行校准,校准参数 会自动存储,在不改变配置的情况下就不需再进行校准。进行校准的示例操作如表 3.12 所示,返回参数的 Bit2~Bit0 表示该命令的运行结果,详细描述见表 3.4。

注意:必须启动测距,在光线较暗的环境下,且前方 40cm 内无障碍物的条件下进行校准。

表 3.12 校准操作示例

通信模式	主机操作	数据帧内容(十六进制)
LLADT	发送	28 9C 00 00
UAKI	接收	28 9C xx

3.2.5 设置测量周期

测量周期是指进行测距的时间。主机可发送命令 90 重新设置测量周期,该命令帧的包含两个参数,参数 1 为重复测量周期的低八位,参数 2 为高八位,共同组成一个 16 位的重复周期,单位是 ms。

例如想要每 1000ms 测出一个数据,转化为 16 进制,即为 3E8。设定参数 1 为 0xE8, 参数 2 为 0x03,然后发送命令 90 给模块完成设置。该示例对应操作如表 3.13 所示,模块返 回参数的的 Bit2~Bit0 表示该命令的运行结果,详细描述见表 3.4。

表 3.13 设置测量周期操作示例

通信模式	主机操作	数据帧内容(十六进制)
	发送	28 90 E8 03
UAKI	接收	28 90 xx

3.2.6 设置迭代次数

迭代次数表示一个测量周期里传感器发射 VCSEL 脉冲的次数,迭代次数越大,抗环境

立功科技

光干扰能力越强,测量可信度越高,但测量周期越长,功耗越大,设置范围在 400k~4000k 内。主机可发送命令 91 重新设置迭代次数,该命令帧的包含两个参数,参数 1 为迭代次数 的低八位,参数 2 为高八位,共同组成一个 16 位的迭代次数,单位是 k 次。

例如要设置迭代次数为 900k,转化为 16 进制,即为 384。设定参数 1 为 0x84,参数 2 为 0x03,然后发送命令 91 给模块完成设置。该示例对应操作如表 3.14 所示,模块返回参数 的的 Bit2~Bit0 表示该命令的运行结果,详细描述见表 3.4。

表 3.14 设置迭代次数操作示例

通信模式	主机操作	数据帧内容(十六进制)
LLADT	发送	28 91 84 03
UAKI	接收	28 91 xx

3.2.7 设置 SPAD_MAP_ID

SPAD_MAP_ID 设置表示传感器设置在哪种模式下进行测距,TOF200 模块可设置 3×3, 4×4, 3×6 模式,TOF201 模块可设置 3×3, 4×4, 3×6, 8×8 模式。主机可发送命令 92 重新 设置 SPAD_MAP_ID,该命令帧的带一个参数,参数 1 为设定的对应 SPAD_MAP_ID。

例如要设置 SPAD_MAP_ID 为 1, 那就可以设定参数 1 为 0x01,参数 2 为 0x00,然后 发送命令 92 进行设置,该示例对应操作如表 3.15 所示。

表 3.15 设置 SPAD_MAP_ID 操作示例

通信模式	主机操作	数据帧内容(十六进制)
LLADT	发送	28 92 01 00
UAKI	接收	28 92 xx

3.2.8 设置置信度阈值

置信度阈值的作用是对当前测距值的过滤,当该通道的置信度低于阈值表示放弃当前通 道的的测距值。主机可发送命令 93 设置置信度阈值,该命令帧的带一个参数,参数1为设 定的对应阈值。

例如要设置置信度阈值为 10,那就可以设定参数 1 为 0x0A,参数 2 为 0x00,然后发送 命令 93 进行设置,该示例对应操作如表 3.16 所示。

表 3.16 设置置信度阈值操作示例

通信模式	主机操作	数据帧内容(十六进制)
	发送	28 93 0A 00
UAKI	接收	28 93 xx

3.2.9 设置 8×8 模式

主机可发送命令 94 设置 8×8 模式(注意 8×8 的模式限于 TOF201 模块使用),8×8 模式配置模块输出 64 个通道测距值。该命令带一个参数:01 表示使能 8×8 模式,00 表示 禁能 8×8 模式(默认状态)。设置模块使能 8×8 模式,该示例对应操作如表 3.17 所示。

表 3.17 设置 8×8 模式操作示例

多点 TOF 测距

User Manual

	发送	28 94 01 00
UART	接收	28 94 xx

3.2.10 设置中断模式

主机可发送命令 95 设置测距中断模式。该命令带一个参数:00 表示每一次发现阈值范围内的目标的测量都将触发中断(默认状态),01 表示必须进行两次连续测量,才能发现阈值范围内的目标将触发中断。该示例对应操作如表 3.18 所示。

表 3.18 设置中断模式操作示例

通信模式	主机操作	数据帧内容(十六进制)
UART	发送	28 95 01 00
	接收	28 95 xx

3.2.11设置最短距离阈值中断

当已设置中断模式必须进行两次连续测量才触发中断的条件下,只有任一测距通道的测 距值大于设置的最短距离阈值时,才会触发中断。默认状态下该值为0。主机可发送命令95 设置最短距离阈值,该命令帧的包含两个参数,参数1为最短距离阈值的低八位,参数2 为高八位,共同组成一个16位的最短距离阈值,单位是mm

例如设置最短距离阈值为 30mm,转化为 16 进制,即为 1E。设定参数 1 为 0x1E,参数 2 为 0x00,然后发送命令 96 给模块完成设置。该示例对应操作如表 3.19 所示,模块返回 参数的的 Bit2~Bit0 表示该命令的运行结果。

表 3.19 设置最短距离阈值中断操作示例

通信模式	主机操作	数据帧内容(十六进制)
LIADT	发送	28 96 1E 00
UARI	接收	28 96 xx

3.2.12 设置最远距离阈值中断

当已设置中断模式必须进行两次连续测量才触发中断下,任一测距通道的测距值小于设置的最远距离阈值时,才会触发中断。默认状态下该值为最大量程测距值。主机可发送命令 97设置最远距离阈值,该命令帧的包含两个参数,参数1为最远距离阈值的低八位,参数2 为高八位,共同组成一个16位的最远距离阈值,单位是mm

例如设置最远距离阈值为 250mm,转化为 16 进制,即为 FA。设定参数 1 为 0xFA,参数 2 为 0x00,然后发送命令 97 给模块完成设置。该示例对应操作如表 3.20 所示。

表 3.20 设置最远距离阈值中断操作示例

通信模式	主机操作	数据帧内容(十六进制)
UART	发送	28 97 FA 00
	接收	28 97 xx

3.2.13 设置短距离精准模式

主机可发送命令 98 使能短距离精准模式,模块由长距离测距模式切换成短距离精准模式,短距离精准模式下模块的最远测距距离至 1.5m,测距精度可达±2.5%。该命令带一个参数:01 表示使能使能短距离精准模式,00 表示禁能使能短距离精准模式(默认状态)。

国垣

例如使能短距离精准模式,对应操作如表 3.21 所示。

表 3.21 使能短距离精准模式

通信模式	主机操作	数据帧内容(十六进制)
	发送	28 98 01 00
UAKI	接收	28 98 xx

3.3 设置系统参数

3.3.1 进入睡眠模式

主机可发送命令 CF 进入睡眠模式。睡眠模式中传感器断电停止工作, MCU 进入深度 睡眠, 之后当有接收到任何信息都自动从睡眠模式退出。该示例对应操作如表 3.22 所示。

表 3.22 进入睡眠模式操作示例

通信模式	主机操作	数据帧内容(十六进制)
LLADT	发送	28 CF 00 00
UAKI	接收	28 CF xx

3.3.2 使能自动输出

主机可发送命令 CE 设置自动输出测距信息。根据 3.2.5 所示,自动输出结果值的时间 间隔与测量周期有关,如果设置的测量周期小于传感器测距时间,那么当前的自动输出结果 的时间等于传感器测距时间。

在自动输出模式下,当已设置模块测量周期为1000ms,当前迭代次数为550k,模块的测距期为32ms,那么此时模块以1000ms周期自动把测距结果发送给主机。使能自动输出的示例操作如表3.23所示。

表 3.23 使能自动输出操作示例

通信模式	主机操作	数据帧内容(十六进制)
LIADT	发送	28 CE 00 00
UAKI	接收	28 CE xx

3.3.3 禁能自动输出

主机可发送命令 CE 设置关闭自动输出测距信息,禁能自动输出的示例操作如表 3.24 所示。

表 3.24 禁能自动输出操作示例

通信模式	主机操作	数据帧内容(十六进制)
UART	发送	28 CD 00 00
	接收	28 CD xx

3.3.4 设置进入测试模式

主机可发送命令 CC 设置进入测试模式。在测试模式,用户操作后接收的所有信息都是 字符串,方便调试。进入测试模式的示例操作如表 3.25 所示。

立功科技

通信模式	主机操作	数据帧内容(十六进制)
IIADT	发送	28 CC 00 00
UAKI	接收	28 CC xx

3.3.5 设置退出测试模式

主机可发送命令 CB 设置退出测试模式,退出测试模式的示例操作如表 3.26 所示。

表 3.26 退出测试模式操作示例

通信模式	主机操作	数据帧内容(十六进制)
UART	发送	28 CB 00 00
	接收	28 CB xx

3.3.6 设置波特率

主机可发送命令 C1 设置从机的 UART 通信波特率,该命令帧的参数 3 用于设置通信波 特率,具体描述如表 3.27 所示。不在下表中波特率,则设置失败。模块断电后新波特率不 会丢失!

表 3.27 波特率选项

参数 1	波特率
0x01	2400
0x02	4800
0x03	9600
0x04	56000
0x05	115200(默认)

例如要设置 UART 通信波特率为 9600, 示例操作如表 3.28 所示。设置完新的波特率后, 需要用新的波特率进行通信。

表 3.28 设置波特率操作示例

通信模式	主机操作	数据帧内容(十六进制)
UART	发送	28 C1 03 00
	接收	28 C1 xx

3.4 常规调试流程

通过 USB-TTL 串口模块与电脑连接,打开串口调试助手选择 115200 波特率并打开 HEX 显示,按图 3.1 所示进行调试即可:

- 以 16 进制发送 "28 20 00 00" 获取模块状态,直到返回 "28 20 80",表示上电初 始化成功,可进行后面的操作;
- 2) 【可选】以 16 进制发送 "28 90 21 00" 设置测量周期为 33ms,这一步不设置默认 测距周期为 100ms;
- 【可选】以 16 进制发送 "28 91 B0 04" 设置迭代次数为 1.2M,这一步不设置默认 迭代次数为 550k;

多点 TOF 测距

- 4) 以 16 进制发送 "28 9E 00 00" 启动测量, 若返回 "28 9E CO" 表示启动成功;
- 5) 以 16 进制发送 "28 21 00 00" 即可读取测量信息。

此外,也可选择设置进入测试模式进行调试,测试模式下接收的都是字符串信息,设置 如下:

- 1) 以 16 进制发送 "28 CC 00 00" 设置进入测试模式,直到返回 "28 CC 80",表示 已进入测试模式,串口调试助手关闭 HEX 显示后可进行后面的操作;
- 以 16 进制发送 "28 20 00 00" 获取状态,接收字符串"已初始化成功,测距已停止,测距测距结果未更新,模块已处理完指令";
- 【可选】以 16 进制发送 "28 91 B0 04" 设置迭代次数为 1.2M, 若返回"设置迭 代次数为 1200k"表示启动成功;
- 4) 以 16 进制发送 "28 9E 00 00" 启动测距, 若返回"测距已启动"表示启动测距成功;
- 5) 以 16 进制发送 "28 21 00 00" 即可读取测量信息,在当前 3×3 模式,返回 3×3 两 个目标通道的测距结果值,如图 3.2 所示;
- 6) 以 16 进制发送 "28 9D 00 00" 停止测距, 若返回"测距已停止"表示停止测距成功;
- 7) 以 16 进制发送 "28 CD 00 00" 退出测试模式,直到模块返回 "28 CD 80",表示 已退出测试模式。

Lloor	Manual
User	Ivianual

->模块已初始化 ->模块已停止测距 ->测旋结果更新 ->模块完厚指令 ->设置迭代次数为1200k ->测距已启动				
23 18 23	20 14 25	22 17 26		
obj2 0 0 0	0 0 0	0 0 0		
->测距6	已停止			

图 3.2 测试模式操作示例

4. 免责声明

本着为用户提供更好服务的原则,广州立功科技股份有限公司(下称"立功科技")在 本手册中将尽可能地为用户呈现详实、准确的产品信息。但介于本手册的内容具有一定的时 效性,立功科技不能完全保证该文档在任何时段的时效性与适用性。立功科技有权在没有通 知的情况下对本手册上的内容进行更新,恕不另行通知。为了得到最新版本的信息,请尊敬 的用户定时访问立功科技官方网站或者与立功科技工作人员联系。感谢您的包容与支持!

Dreams come true with professionalism and dedication.

广州立功科技股份有限公司

更多详情请访问 www.zlgmcu.com 400-888-2705

欢迎拨打全国服务热线

